首页 磁力链接怎么用

[FreeTutorials.Us] Udemy - machine-learning-course-with-python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2018-12-12 09:05 2025-5-28 09:59 129 2.91 GB 89
二维码链接
[FreeTutorials.Us] Udemy - machine-learning-course-with-python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01 Introduction/001 What Does the Course Cover.mp49.88MB
  2. 02 Getting Started with Anaconda/004 Windows OS Downloading Installing Anaconda.mp464.36MB
  3. 02 Getting Started with Anaconda/005 Windows OS Managing Environment.mp418.82MB
  4. 02 Getting Started with Anaconda/008 Navigating the Spyder Jupyter Notebook Interface.mp441.35MB
  5. 02 Getting Started with Anaconda/009 Downloading the IRIS Datasets.mp410.49MB
  6. 02 Getting Started with Anaconda/010 Data Exploration and Analysis.mp434.79MB
  7. 02 Getting Started with Anaconda/011 Presenting Your Data.mp446.52MB
  8. 03 Regression/012 Introduction.mp411.72MB
  9. 03 Regression/013 Categories of Machine Learning.mp422.36MB
  10. 03 Regression/014 Working with Scikit-Learn.mp445.94MB
  11. 03 Regression/015 Boston Housing Data - EDA.mp461.46MB
  12. 03 Regression/016 Correlation Analysis and Feature Selection.mp422.58MB
  13. 03 Regression/017 Simple Linear Regression Modelling with Boston Housing Data.mp433.8MB
  14. 03 Regression/018 Robust Regression.mp433.46MB
  15. 03 Regression/019 Evaluate Model Performance.mp459.14MB
  16. 03 Regression/020 Multiple Regression with statsmodel.mp459.64MB
  17. 03 Regression/021 Multiple Regression and Feature Importance.mp444.66MB
  18. 03 Regression/022 Ordinary Least Square Regression and Gradient Descent.mp450.03MB
  19. 03 Regression/023 Regularised Method for Regression.mp447.81MB
  20. 03 Regression/024 Polynomial Regression.mp443.81MB
  21. 03 Regression/025 Dealing with Non-linear relationships.mp428.44MB
  22. 03 Regression/026 Feature Importance Revisited.mp426.18MB
  23. 03 Regression/027 Data Pre-Processing 1.mp434.92MB
  24. 03 Regression/028 Data Pre-Processing 2.mp449.58MB
  25. 03 Regression/029 Variance Bias Trade Off - Validation Curve.mp443.83MB
  26. 03 Regression/030 Variance Bias Trade Off - Learning Curve.mp442.45MB
  27. 03 Regression/031 Cross Validation.mp444.68MB
  28. 04 Classification/032 Introduction.mp47.91MB
  29. 04 Classification/033 Logistic Regression 1.mp426.93MB
  30. 04 Classification/034 Logistic Regression 2.mp441.75MB
  31. 04 Classification/035 MNIST Project 1 - Introduction.mp434.55MB
  32. 04 Classification/036 MNIST Project 2 - SGDClassifier.mp425.47MB
  33. 04 Classification/037 MNIST Project 3 - Performance Measures.mp426.4MB
  34. 04 Classification/038 MNIST Project 4 - Confusion Matrix Precision Recall and F1 Score.mp446.08MB
  35. 04 Classification/039 MNIST Project 5 - Precision and Recall Tradeoff.mp443.91MB
  36. 04 Classification/040 MNIST Project 6 - The ROC Curve.mp433.78MB
  37. 05 Support Vector Machine SVM/042 Introduction.mp44.72MB
  38. 05 Support Vector Machine SVM/043 Support Vector Machine SVM Concepts.mp451.8MB
  39. 05 Support Vector Machine SVM/044 Linear SVM Classification.mp431.57MB
  40. 05 Support Vector Machine SVM/045 Polynomial Kernel.mp450.31MB
  41. 05 Support Vector Machine SVM/046 Gaussian Radial Basis Function.mp444.8MB
  42. 05 Support Vector Machine SVM/047 Support Vector Regression.mp417.39MB
  43. 05 Support Vector Machine SVM/048 Advantages and Disadvantages of SVM.mp413.11MB
  44. 06 Tree/049 Introduction.mp45.58MB
  45. 06 Tree/050 What is Decision Tree.mp434.07MB
  46. 06 Tree/051 Training a Decision Tree.mp416.59MB
  47. 06 Tree/052 Visualising a Decision Trees.mp455.25MB
  48. 06 Tree/053 Decision Tree Learning Algorithm.mp436.97MB
  49. 06 Tree/054 Decision Tree Regression.mp433.8MB
  50. 06 Tree/055 Overfitting and Grid Search.mp454.43MB
  51. 06 Tree/056 Where to From Here.mp411.62MB
  52. 06 Tree/057 Project HR - Loading and preprocesing data.mp456.76MB
  53. 06 Tree/058 Project HR - Modelling.mp416.5MB
  54. 07 Ensemble Machine Learning/059 Introduction.mp45.22MB
  55. 07 Ensemble Machine Learning/060 Ensemble Learning Methods Introduction.mp427.68MB
  56. 07 Ensemble Machine Learning/061 Bagging Part 1.mp455.47MB
  57. 07 Ensemble Machine Learning/062 Bagging Part 2.mp437.31MB
  58. 07 Ensemble Machine Learning/063 Random Forests.mp443.11MB
  59. 07 Ensemble Machine Learning/064 Extra-Trees.mp421.58MB
  60. 07 Ensemble Machine Learning/065 AdaBoost.mp439.82MB
  61. 07 Ensemble Machine Learning/066 Gradient Boosting Machine.mp444.87MB
  62. 07 Ensemble Machine Learning/067 XGBoost.mp451.35MB
  63. 07 Ensemble Machine Learning/068 Project HR - Human Resources Analytics.mp488.16MB
  64. 07 Ensemble Machine Learning/069 Ensemble of ensembles Part 1.mp452.03MB
  65. 07 Ensemble Machine Learning/070 Ensemble of ensembles Part 2.mp444.89MB
  66. 08 k-Nearest Neighbours kNN/071 kNN Introduction.mp44.37MB
  67. 08 k-Nearest Neighbours kNN/072 kNN Concepts.mp415MB
  68. 08 k-Nearest Neighbours kNN/073 kNN and Iris Dataset Demo.mp420.75MB
  69. 08 k-Nearest Neighbours kNN/074 Distance Metric.mp413.08MB
  70. 08 k-Nearest Neighbours kNN/075 Project Cancer Detection Part 1.mp449.4MB
  71. 08 k-Nearest Neighbours kNN/076 Project Cancer Detection Part 2.mp448.64MB
  72. 09 Dimensionality Reduction/077 Introduction.mp43.63MB
  73. 09 Dimensionality Reduction/078 Dimensionality Reduction Concept.mp425.73MB
  74. 09 Dimensionality Reduction/079 PCA Introduction.mp442.24MB
  75. 09 Dimensionality Reduction/080 Dimensionality Reduction Demo.mp414.64MB
  76. 09 Dimensionality Reduction/081 Project Wine 1 Dimensionality Reduction with PCA.mp446.11MB
  77. 09 Dimensionality Reduction/083 Project Wine 2 Choosing the Number of Components.mp418.79MB
  78. 09 Dimensionality Reduction/084 Kernel PCA.mp435.84MB
  79. 09 Dimensionality Reduction/085 Kernel PCA Demo.mp416.01MB
  80. 09 Dimensionality Reduction/086 LDA Comparison between LDA and PCA.mp416.9MB
  81. 10 Unsupervised Learning Clustering/087 Introduction.mp44.03MB
  82. 10 Unsupervised Learning Clustering/088 Clustering Concepts.mp417.47MB
  83. 10 Unsupervised Learning Clustering/089 MLextend.mp422.58MB
  84. 10 Unsupervised Learning Clustering/090 Wards Agglomerative Hierarchical Clustering.mp444.12MB
  85. 10 Unsupervised Learning Clustering/091 Truncating Dendrogram.mp456.42MB
  86. 10 Unsupervised Learning Clustering/092 k-Means Clustering.mp436.59MB
  87. 10 Unsupervised Learning Clustering/093 Elbow Method.mp415.76MB
  88. 10 Unsupervised Learning Clustering/094 Silhouette Analysis.mp416.5MB
  89. 10 Unsupervised Learning Clustering/095 Mean Shift.mp425.68MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统