首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Complete Data Analysis Course with Pandas & NumPy Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-9-27 10:46 2024-12-25 00:50 180 4.18 GB 89
二维码链接
[DesireCourse.Net] Udemy - Complete Data Analysis Course with Pandas & NumPy  Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. What is Data analysis.mp495.77MB
  2. 1. Introduction/2. Introduction to Pandas.mp478.38MB
  3. 1. Introduction/3. Course FAQ.mp473.66MB
  4. 10. Panel Pandas/1. Warning - Panel Data type.mp48.62MB
  5. 11. Pandas Options/1. max_rows , max_columns.mp466.11MB
  6. 11. Pandas Options/2. precision.mp413.02MB
  7. 12. Visualize Data with Pandas/1. Display Stock data with Line Chart.mp463.8MB
  8. 12. Visualize Data with Pandas/2. Pie, Histogram and Bar Chart.mp456.34MB
  9. 13. Import and Export data from Pandas/1. read_csv() & to_csv() method.mp461.68MB
  10. 14. Working with Text Data/1. Getting started with Data.mp444.42MB
  11. 14. Working with Text Data/2. Some String methods.mp443.43MB
  12. 14. Working with Text Data/3. More String methods.mp470.95MB
  13. 14. Working with Text Data/4. Filtering Message with String.mp441.36MB
  14. 14. Working with Text Data/5. Splitting Text.mp429.46MB
  15. 14. Working with Text Data/6. Processing on Column names.mp410.1MB
  16. 15. Data Grouping/1. Importing Data Grouping.mp448.54MB
  17. 15. Data Grouping/2. Getting Group.mp437.42MB
  18. 15. Data Grouping/3. Size, First and Last Method.mp431.05MB
  19. 15. Data Grouping/4. Sum, Mean, Max, Min Method.mp448.31MB
  20. 15. Data Grouping/5. .agg method.mp439.26MB
  21. 16. Data Frame Multiindex/1. Import Data - Multiindex.mp49.58MB
  22. 16. Data Frame Multiindex/2. Set multiple column as index.mp423.38MB
  23. 16. Data Frame Multiindex/3. Sorting MultiIndex.mp432.01MB
  24. 16. Data Frame Multiindex/4. Index - Meta Information.mp439.43MB
  25. 16. Data Frame Multiindex/5. Change Index names.mp410.22MB
  26. 16. Data Frame Multiindex/6. Fetch data from MultiIndex Dataframe.mp439.08MB
  27. 16. Data Frame Multiindex/7. Transposing DataFrame.mp451MB
  28. 16. Data Frame Multiindex/8. UnStack and Stack Data.mp448.66MB
  29. 16. Data Frame Multiindex/9. Pivot and Pivot_table Method.mp438.91MB
  30. 17. Working with Time series data/1. Python Date and Datetime module.mp436.19MB
  31. 17. Working with Time series data/2. Pandas Timestamp and Datetimeindex object.mp486.31MB
  32. 18. Data cleaning/1. Data cleaning - Youtube Dataset (warm up) Part - 1.mp418.5MB
  33. 18. Data cleaning/2. Data cleaning - Youtube Channel Dataset Part - 2.mp448.73MB
  34. 18. Data cleaning/3. Data cleaning - Youtube Channel Dataset Part - 3.mp490.72MB
  35. 2. Installation and IDE/1. Different ways of installation.mp453.41MB
  36. 2. Installation and IDE/2. Download and Install anaconda + Pandas.mp446.67MB
  37. 2. Installation and IDE/4. Anaconda + Conda Command.mp457.09MB
  38. 2. Installation and IDE/7. Getting started with Jupyter Lab.mp474.99MB
  39. 2. Installation and IDE/9. Import Library.mp423.53MB
  40. 4. Python Crash Course [Optional]/1. Introduction.mp434.27MB
  41. 4. Python Crash Course [Optional]/10. Functions.mp426.43MB
  42. 4. Python Crash Course [Optional]/2. Python Basics - I.mp449.84MB
  43. 4. Python Crash Course [Optional]/4. Python Basics - II.mp428.25MB
  44. 4. Python Crash Course [Optional]/6. Lists and tuples.mp462.73MB
  45. 4. Python Crash Course [Optional]/8. Dictionary and set.mp435.31MB
  46. 5. Python Exercises/1. Exercise Overview.mp429.16MB
  47. 5. Python Exercises/2. Solutions.mp4109.43MB
  48. 6. Numpy/1. Creating NumPy array.mp485.15MB
  49. 6. Numpy/2. Numpy indexing and selection, Functions.mp493.62MB
  50. 6. Numpy/3. Some more Numpy Functions.mp461.94MB
  51. 6. Numpy/4. Linear algebra with NumPy.mp443.83MB
  52. 6. Numpy/5. List vs NumPy Array.mp451.15MB
  53. 6. Numpy/6. Views vs Copy - Numpy Array.mp434.75MB
  54. 6. Numpy/7. Insert, Append and Delete NumPy array.mp445.16MB
  55. 6. Numpy/8. Split, Concatenate, Tile and Repeat array.mp459.86MB
  56. 7. Series Pandas/10. inplace parameter, sort_values & sort_index.mp433.4MB
  57. 7. Series Pandas/12. Apply Python built in function on Series.mp413.95MB
  58. 7. Series Pandas/13. Extract Value from Series.mp425.76MB
  59. 7. Series Pandas/15. .value_counts() Method.mp47.7MB
  60. 7. Series Pandas/16. .apply() and .map() method.mp433.3MB
  61. 7. Series Pandas/2. Introduction to Series.mp451.47MB
  62. 7. Series Pandas/3. Create Series from Python Object.mp447.72MB
  63. 7. Series Pandas/4. Create Series from CSV file.mp448.2MB
  64. 7. Series Pandas/6. Series attributes & methods.mp458.37MB
  65. 7. Series Pandas/8. Label indexing.mp419.43MB
  66. 8. Data Frame Pandas/1. Introduction to Data Frame.mp473.01MB
  67. 8. Data Frame Pandas/10. Filtering Data with .isin() method.mp437.2MB
  68. 8. Data Frame Pandas/11. Filtering Data with .between() method.mp428.55MB
  69. 8. Data Frame Pandas/12. unique() & nunique() method.mp429.92MB
  70. 8. Data Frame Pandas/13. sorting values.mp484.74MB
  71. 8. Data Frame Pandas/14. sort index and inplace parameter.mp437.7MB
  72. 8. Data Frame Pandas/15. .loc() and .iloc() method.mp475.04MB
  73. 8. Data Frame Pandas/16. .ix() method.mp422.01MB
  74. 8. Data Frame Pandas/17. .astype() method - optimize memory requirement.mp449.88MB
  75. 8. Data Frame Pandas/18. set_index() change index column.mp434.22MB
  76. 8. Data Frame Pandas/19. .apply() method on single column.mp434.76MB
  77. 8. Data Frame Pandas/2. Create Data Frame - random data + from File.mp485.44MB
  78. 8. Data Frame Pandas/20. .apply() method on multiple column.mp455.58MB
  79. 8. Data Frame Pandas/21. Fetch random sample.mp429.02MB
  80. 8. Data Frame Pandas/3. Data frame attributes and methods.mp483.4MB
  81. 8. Data Frame Pandas/4. Adding new column.mp430.55MB
  82. 8. Data Frame Pandas/5. Select one or more than one column.mp444.87MB
  83. 8. Data Frame Pandas/6. Broadcasting operation.mp428.46MB
  84. 8. Data Frame Pandas/7. Drop missing row or column.mp435.95MB
  85. 8. Data Frame Pandas/8. Filtering Data with one condition.mp468.55MB
  86. 8. Data Frame Pandas/9. Filtering Data with multiple condition.mp438.81MB
  87. 9. Pandas Exercise/1. Exercise Overview Google App store dataset.mp428.68MB
  88. 9. Pandas Exercise/2. Pandas Exercise Solution - I.mp4132.99MB
  89. 9. Pandas Exercise/3. Pandas Exercise Solution - II.mp4131.72MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统