首页 磁力链接怎么用

GetFreeCourses.Co-Udemy-Complete Tensorflow 2 and Keras Deep Learning Bootcamp

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-3-22 16:53 2025-1-22 00:48 360 6.55 GB 114
二维码链接
GetFreeCourses.Co-Udemy-Complete Tensorflow 2 and Keras Deep Learning Bootcamp的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Course Overview, Installs, and Setup/2. Course Overview.mp426.16MB
  2. 1. Course Overview, Installs, and Setup/3. Course Setup and Installation.mp4152.41MB
  3. 10. Natural Language Processing/1. Introduction to NLP Section.mp435.12MB
  4. 10. Natural Language Processing/2. NLP - Part One - The Data.mp422.3MB
  5. 10. Natural Language Processing/3. NLP - Part Two - Text Processing.mp422.88MB
  6. 10. Natural Language Processing/4. NLP - Part Three - Creating Batches.mp481.69MB
  7. 10. Natural Language Processing/5. NLP - Part Four - Creating the Model.mp464.32MB
  8. 10. Natural Language Processing/6. NLP - Part Five - Training the Model.mp465.26MB
  9. 10. Natural Language Processing/7. NLP - Part Six - Generating Text.mp452.31MB
  10. 11. AutoEncoders/1. Introduction to Autoencoders.mp420.89MB
  11. 11. AutoEncoders/2. Autoencoder Basics.mp442.64MB
  12. 11. AutoEncoders/3. Autoencoder for Dimensionality Reduction.mp4117.48MB
  13. 11. AutoEncoders/4. Autoencoder for Images - Part One.mp494.09MB
  14. 11. AutoEncoders/5. Autoencoder for Images - Part Two - Noise Removal.mp460.51MB
  15. 11. AutoEncoders/6. Autoencoder Exercise Overview.mp433.92MB
  16. 11. AutoEncoders/7. Autoencoder Exercise - Solutions.mp477.76MB
  17. 12. Generative Adversarial Networks/1. GANs Overview.mp453.86MB
  18. 12. Generative Adversarial Networks/2. Creating a GAN - Part One- The Data.mp419.13MB
  19. 12. Generative Adversarial Networks/3. Creating a GAN - Part Two - The Model.mp469.81MB
  20. 12. Generative Adversarial Networks/4. Creating a GAN - Part Three - Model Training.mp4131.59MB
  21. 12. Generative Adversarial Networks/5. DCGAN - Deep Convolutional Generative Adversarial Networks.mp457.18MB
  22. 13. Deployment/1. Introduction to Deployment.mp423.43MB
  23. 13. Deployment/2. Creating the Model.mp487.08MB
  24. 13. Deployment/3. Model Prediction Function.mp453.03MB
  25. 13. Deployment/4. Running a Basic Flask Application.mp462.02MB
  26. 13. Deployment/5. Flask Postman API.mp469.11MB
  27. 13. Deployment/6. Flask API - Using Requests Programmatically.mp419.9MB
  28. 13. Deployment/7. Flask Front End.mp4149.6MB
  29. 13. Deployment/8. Live Deployment to the Web.mp4126.54MB
  30. 3. NumPy Crash Course/1. Introduction to NumPy.mp411.39MB
  31. 3. NumPy Crash Course/2. NumPy Arrays.mp488.58MB
  32. 3. NumPy Crash Course/3. Numpy Index Selection.mp446.38MB
  33. 3. NumPy Crash Course/4. NumPy Operations.mp448.6MB
  34. 3. NumPy Crash Course/5. NumPy Exercises.mp411.52MB
  35. 3. NumPy Crash Course/6. Numpy Exercises - Solutions.mp448.59MB
  36. 4. Pandas Crash Course/1. Introduction to Pandas.mp425.5MB
  37. 4. Pandas Crash Course/10. Pandas Exercises - Solutions.mp451.47MB
  38. 4. Pandas Crash Course/2. Pandas Series.mp437.88MB
  39. 4. Pandas Crash Course/3. Pandas DataFrames - Part One.mp445.17MB
  40. 4. Pandas Crash Course/4. Pandas DataFrames - Part Two.mp437.01MB
  41. 4. Pandas Crash Course/5. Pandas Missing Data.mp444.06MB
  42. 4. Pandas Crash Course/6. GroupBy Operations.mp456.37MB
  43. 4. Pandas Crash Course/7. Pandas Operations.mp461.21MB
  44. 4. Pandas Crash Course/8. Data Input and Output.mp493.49MB
  45. 4. Pandas Crash Course/9. Pandas Exercises.mp423.48MB
  46. 5. Visualization Crash Course/1. Introduction to Python Visualization.mp46.82MB
  47. 5. Visualization Crash Course/2. Matplotlib Basics.mp441.03MB
  48. 5. Visualization Crash Course/3. Seaborn Basics.mp491.85MB
  49. 5. Visualization Crash Course/4. Data Visualization Exercises.mp422.82MB
  50. 5. Visualization Crash Course/5. Data Visualization Exercises - Solutions.mp450.46MB
  51. 6. Machine Learning Concepts Overview/1. What is Machine Learning.mp428.2MB
  52. 6. Machine Learning Concepts Overview/2. Supervised Learning Overview.mp440.03MB
  53. 6. Machine Learning Concepts Overview/3. Overfitting.mp426.32MB
  54. 6. Machine Learning Concepts Overview/4. Evaluating Performance - Classification Error Metrics.mp482.69MB
  55. 6. Machine Learning Concepts Overview/5. Evaluating Performance - Regression Error Metrics.mp423.7MB
  56. 6. Machine Learning Concepts Overview/6. Unsupervised Learning.mp418.82MB
  57. 7. Basic Artificial Neural Networks - ANNs/1. Introduction to ANN Section.mp49.71MB
  58. 7. Basic Artificial Neural Networks - ANNs/10. Keras Syntax Basics - Part Two - Creating and Training the Model.mp484.64MB
  59. 7. Basic Artificial Neural Networks - ANNs/11. Keras Syntax Basics - Part Three - Model Evaluation.mp464.96MB
  60. 7. Basic Artificial Neural Networks - ANNs/12. Keras Regression Code Along - Exploratory Data Analysis.mp4137.06MB
  61. 7. Basic Artificial Neural Networks - ANNs/13. Keras Regression Code Along - Exploratory Data Analysis - Continued.mp476.18MB
  62. 7. Basic Artificial Neural Networks - ANNs/14. Keras Regression Code Along - Data Preprocessing and Creating a Model.mp447.02MB
  63. 7. Basic Artificial Neural Networks - ANNs/15. Keras Regression Code Along - Model Evaluation and Predictions.mp468.92MB
  64. 7. Basic Artificial Neural Networks - ANNs/16. Keras Classification Code Along - EDA and Preprocessing.mp456.15MB
  65. 7. Basic Artificial Neural Networks - ANNs/17. Keras Classification - Dealing with Overfitting and Evaluation.mp4111.26MB
  66. 7. Basic Artificial Neural Networks - ANNs/18. TensorFlow 2.0 Keras Project Options Overview.mp47.86MB
  67. 7. Basic Artificial Neural Networks - ANNs/19. TensorFlow 2.0 Keras Project Notebook Overview.mp480.56MB
  68. 7. Basic Artificial Neural Networks - ANNs/2. Perceptron Model.mp447.81MB
  69. 7. Basic Artificial Neural Networks - ANNs/20. Keras Project Solutions - Exploratory Data Analysis.mp4143.63MB
  70. 7. Basic Artificial Neural Networks - ANNs/21. Keras Project Solutions - Dealing with Missing Data.mp496.78MB
  71. 7. Basic Artificial Neural Networks - ANNs/22. Keras Project Solutions - Dealing with Missing Data - Part Two.mp485.4MB
  72. 7. Basic Artificial Neural Networks - ANNs/23. Keras Project Solutions - Categorical Data.mp4125.03MB
  73. 7. Basic Artificial Neural Networks - ANNs/24. Keras Project Solutions - Data PreProcessing.mp423.95MB
  74. 7. Basic Artificial Neural Networks - ANNs/25. Keras Project Solutions - Creating and Training a Model.mp429.72MB
  75. 7. Basic Artificial Neural Networks - ANNs/26. Keras Project Solutions - Model Evaluation.mp463.18MB
  76. 7. Basic Artificial Neural Networks - ANNs/27. Tensorboard.mp4144.18MB
  77. 7. Basic Artificial Neural Networks - ANNs/3. Neural Networks.mp435.79MB
  78. 7. Basic Artificial Neural Networks - ANNs/4. Activation Functions.mp462.52MB
  79. 7. Basic Artificial Neural Networks - ANNs/5. Multi-Class Classification Considerations.mp445.89MB
  80. 7. Basic Artificial Neural Networks - ANNs/6. Cost Functions and Gradient Descent.mp475.67MB
  81. 7. Basic Artificial Neural Networks - ANNs/7. Backpropagation.mp457.68MB
  82. 7. Basic Artificial Neural Networks - ANNs/8. TensorFlow vs. Keras Explained.mp410.47MB
  83. 7. Basic Artificial Neural Networks - ANNs/9. Keras Syntax Basics - Part One - Preparing the Data.mp450.5MB
  84. 8. Convolutional Neural Networks - CNNs/1. CNN Section Overview.mp47.52MB
  85. 8. Convolutional Neural Networks - CNNs/10. CNN on CIFAR-10 - Part Two - Evaluating the Model.mp445.34MB
  86. 8. Convolutional Neural Networks - CNNs/11. Downloading Data Set for Real Image Lectures.mp428.24MB
  87. 8. Convolutional Neural Networks - CNNs/12. CNN on Real Image Files - Part One - Reading in the Data.mp480.69MB
  88. 8. Convolutional Neural Networks - CNNs/13. CNN on Real Image Files - Part Two - Data Processing.mp487.93MB
  89. 8. Convolutional Neural Networks - CNNs/14. CNN on Real Image Files - Part Three - Creating the Model.mp490.63MB
  90. 8. Convolutional Neural Networks - CNNs/15. CNN on Real Image Files - Part Four - Evaluating the Model.mp447.12MB
  91. 8. Convolutional Neural Networks - CNNs/16. CNN Exercise Overview.mp417.88MB
  92. 8. Convolutional Neural Networks - CNNs/17. CNN Exercise Solutions.mp456.03MB
  93. 8. Convolutional Neural Networks - CNNs/2. Image Filters and Kernels.mp472.34MB
  94. 8. Convolutional Neural Networks - CNNs/3. Convolutional Layers.mp458MB
  95. 8. Convolutional Neural Networks - CNNs/4. Pooling Layers.mp427.65MB
  96. 8. Convolutional Neural Networks - CNNs/5. MNIST Data Set Overview.mp421.11MB
  97. 8. Convolutional Neural Networks - CNNs/6. CNN on MNIST - Part One - The Data.mp459.82MB
  98. 8. Convolutional Neural Networks - CNNs/7. CNN on MNIST - Part Two - Creating and Training the Model.mp498.92MB
  99. 8. Convolutional Neural Networks - CNNs/8. CNN on MNIST - Part Three - Model Evaluation.mp438.49MB
  100. 8. Convolutional Neural Networks - CNNs/9. CNN on CIFAR-10 - Part One - The Data.mp464.31MB
  101. 9. Recurrent Neural Networks - RNNs/1. RNN Section Overview.mp410.91MB
  102. 9. Recurrent Neural Networks - RNNs/10. RNN on a Time Series - Part One.mp445.02MB
  103. 9. Recurrent Neural Networks - RNNs/11. RNN on a Time Series - Part Two.mp4131.02MB
  104. 9. Recurrent Neural Networks - RNNs/12. RNN Exercise.mp429.93MB
  105. 9. Recurrent Neural Networks - RNNs/13. RNN Exercise - Solutions.mp4148.09MB
  106. 9. Recurrent Neural Networks - RNNs/14. Bonus - Multivariate Time Series - RNN and LSTMs.mp4149.33MB
  107. 9. Recurrent Neural Networks - RNNs/2. RNN Basic Theory.mp429.98MB
  108. 9. Recurrent Neural Networks - RNNs/3. Vanishing Gradients.mp428.13MB
  109. 9. Recurrent Neural Networks - RNNs/4. LSTMS and GRU.mp441.95MB
  110. 9. Recurrent Neural Networks - RNNs/5. RNN Batches.mp432.72MB
  111. 9. Recurrent Neural Networks - RNNs/6. RNN on a Sine Wave - The Data.mp440.13MB
  112. 9. Recurrent Neural Networks - RNNs/7. RNN on a Sine Wave - Batch Generator.mp450.03MB
  113. 9. Recurrent Neural Networks - RNNs/8. RNN on a Sine Wave - Creating the Model.mp483.8MB
  114. 9. Recurrent Neural Networks - RNNs/9. RNN on a Sine Wave - LSTMs and Forecasting.mp483.49MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统