首页 磁力链接怎么用

2014斯坦福大学机器学习mkv视频

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2017-6-13 14:07 2025-1-13 19:41 149 1.33 GB 129
二维码链接
2014斯坦福大学机器学习mkv视频的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1 - 1 - Welcome (7 min).mkv11.69MB
  2. 1 - 2 - What is Machine Learning_ (7 min).mkv9.25MB
  3. 1 - 3 - Supervised Learning (12 min).mkv13.25MB
  4. 1 - 4 - Unsupervised Learning (14 min).mkv16.45MB
  5. 10 - 1 - Deciding What to Try Next (6 min).mkv6.78MB
  6. 10 - 2 - Evaluating a Hypothesis (8 min).mkv8.36MB
  7. 10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mkv14.92MB
  8. 10 - 4 - Diagnosing Bias vs. Variance (8 min).mkv8.86MB
  9. 10 - 5 - Regularization and Bias_Variance (11 min).mkv12.42MB
  10. 10 - 6 - Learning Curves (12 min).mkv12.74MB
  11. 10 - 7 - Deciding What to Do Next Revisited (7 min).mkv8.08MB
  12. 11 - 1 - Prioritizing What to Work On (10 min).mkv11.03MB
  13. 11 - 2 - Error Analysis (13 min).mkv15.22MB
  14. 11 - 3 - Error Metrics for Skewed Classes (12 min).mkv13.07MB
  15. 11 - 4 - Trading Off Precision and Recall (14 min).mkv15.77MB
  16. 11 - 5 - Data For Machine Learning (11 min).mkv12.7MB
  17. 12 - 1 - Optimization Objective (15 min).mkv16.42MB
  18. 12 - 2 - Large Margin Intuition (11 min).mkv11.65MB
  19. 12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mkv21.51MB
  20. 12 - 4 - Kernels I (16 min).mkv17.32MB
  21. 12 - 5 - Kernels II (16 min).mkv17.2MB
  22. 12 - 6 - Using An SVM (21 min).mkv23.63MB
  23. 13 - 1 - Unsupervised Learning_ Introduction (3 min).mkv3.76MB
  24. 13 - 2 - K-Means Algorithm (13 min).mkv13.61MB
  25. 13 - 3 - Optimization Objective (7 min)(1).mkv8.04MB
  26. 13 - 3 - Optimization Objective (7 min).mkv8.03MB
  27. 13 - 4 - Random Initialization (8 min).mkv8.56MB
  28. 13 - 5 - Choosing the Number of Clusters (8 min).mkv9.28MB
  29. 14 - 1 - Motivation I_ Data Compression (10 min).mkv14.15MB
  30. 14 - 2 - Motivation II_ Visualization (6 min).mkv6.22MB
  31. 14 - 3 - Principal Component Analysis Problem Formulation (9 min).mkv10.32MB
  32. 14 - 4 - Principal Component Analysis Algorithm (15 min).mkv17.55MB
  33. 14 - 5 - Choosing the Number of Principal Components (11 min).mkv11.67MB
  34. 14 - 6 - Reconstruction from Compressed Representation (4 min).mkv4.92MB
  35. 14 - 7 - Advice for Applying PCA (13 min).mkv14.5MB
  36. 15 - 1 - Problem Motivation (8 min).mkv8.23MB
  37. 15 - 2 - Gaussian Distribution (10 min).mkv11.53MB
  38. 15 - 3 - Algorithm (12 min).mkv13.77MB
  39. 15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mkv14.96MB
  40. 15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mkv9.17MB
  41. 15 - 6 - Choosing What Features to Use (12 min).mkv13.93MB
  42. 15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mkv15.72MB
  43. 15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mkv16.12MB
  44. 16 - 1 - Problem Formulation (8 min).mkv10.57MB
  45. 16 - 2 - Content Based Recommendations (15 min).mkv16.71MB
  46. 16 - 3 - Collaborative Filtering (10 min).mkv11.6MB
  47. 16 - 4 - Collaborative Filtering Algorithm (9 min).mkv10.18MB
  48. 16 - 5 - Vectorization_ Low Rank Matrix Factorization (8 min).mkv9.55MB
  49. 16 - 6 - Implementational Detail_ Mean Normalization (9 min).mkv9.58MB
  50. 17 - 1 - Learning With Large Datasets (6 min).mkv6.41MB
  51. 17 - 2 - Stochastic Gradient Descent (13 min).mkv15.12MB
  52. 17 - 3 - Mini-Batch Gradient Descent (6 min).mkv7.22MB
  53. 17 - 4 - Stochastic Gradient Descent Convergence (12 min).mkv13.15MB
  54. 17 - 5 - Online Learning (13 min).mkv14.72MB
  55. 17 - 6 - Map Reduce and Data Parallelism (14 min).mkv15.84MB
  56. 18 - 1 - Problem Description and Pipeline (7 min).mkv7.81MB
  57. 18 - 2 - Sliding Windows (15 min).mkv16.3MB
  58. 18 - 3 - Getting Lots of Data and Artificial Data (16 min).mkv18.57MB
  59. 18 - 4 - Ceiling Analysis_ What Part of the Pipeline to Work on Next (14 min).mkv15.9MB
  60. 19 - 1 - Summary and Thank You (5 min).mkv6.02MB
  61. 2 - 1 - Model Representation (8 min).mkv8.86MB
  62. 2 - 2 - Cost Function (8 min).mkv8.91MB
  63. 2 - 3 - Cost Function - Intuition I (11 min).mkv12.06MB
  64. 2 - 4 - Cost Function - Intuition II (9 min).mkv11.22MB
  65. 2 - 5 - Gradient Descent (11 min).mkv13.32MB
  66. 2 - 6 - Gradient Descent Intuition (12 min).mkv12.84MB
  67. 2 - 7 - GradientDescentForLinearRegression (6 min).mkv12.02MB
  68. 2 - 8 - What_'s Next (6 min).mkv5.99MB
  69. 3 - 1 - Matrices and Vectors (9 min).mkv9.42MB
  70. 3 - 2 - Addition and Scalar Multiplication (7 min).mkv7.35MB
  71. 3 - 3 - Matrix Vector Multiplication (14 min).mkv14.78MB
  72. 3 - 4 - Matrix Matrix Multiplication (11 min).mkv12.42MB
  73. 3 - 5 - Matrix Multiplication Properties (9 min).mkv9.67MB
  74. 3 - 6 - Inverse and Transpose (11 min).mkv12.69MB
  75. 4 - 1 - Multiple Features (8 min).mkv8.71MB
  76. 4 - 2 - Gradient Descent for Multiple Variables (5 min).mkv5.71MB
  77. 4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mkv9.32MB
  78. 4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mkv9.13MB
  79. 4 - 5 - Features and Polynomial Regression (8 min).mkv8.15MB
  80. 4 - 6 - Normal Equation (16 min).mkv16.88MB
  81. 4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mkv6.15MB
  82. 5 - 1 - Basic Operations (14 min).mkv17.5MB
  83. 5 - 2 - Moving Data Around (16 min).mkv20.52MB
  84. 5 - 3 - Computing on Data (13 min).mkv15.04MB
  85. 5 - 4 - Plotting Data (10 min).mkv13.17MB
  86. 5 - 5 - Control Statements_ for, while, if statements (13 min).mkv16.29MB
  87. 5 - 6 - Vectorization (14 min).mkv15.88MB
  88. 5 - 7 - Working on and Submitting Programming Exercises (4 min).mkv5.41MB
  89. 6 - 1 - Classification (8 min).mkv8.65MB
  90. 6 - 2 - Hypothesis Representation (7 min).mkv8.23MB
  91. 6 - 3 - Decision Boundary (15 min).mkv16.51MB
  92. 6 - 4 - Cost Function (11 min).mkv12.92MB
  93. 6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mkv11.8MB
  94. 6 - 6 - Advanced Optimization (14 min).mkv17.95MB
  95. 6 - 7 - Multiclass Classification_ One-vs-all (6 min).mkv6.83MB
  96. 7 - 1 - The Problem of Overfitting (10 min).mkv11MB
  97. 7 - 2 - Cost Function (10 min).mkv11.48MB
  98. 7 - 3 - Regularized Linear Regression (11 min).mkv11.84MB
  99. 7 - 4 - Regularized Logistic Regression (9 min).mkv10.77MB
  100. 8 - 1 - Non-linear Hypotheses (10 min).mkv10.73MB
  101. 8 - 2 - Neurons and the Brain (8 min).mkv9.77MB
  102. 8 - 3 - Model Representation I (12 min).mkv13.32MB
  103. 8 - 4 - Model Representation II (12 min).mkv13.27MB
  104. 8 - 5 - Examples and Intuitions I (7 min).mkv7.78MB
  105. 8 - 6 - Examples and Intuitions II (10 min).mkv13.84MB
  106. 8 - 7 - Multiclass Classification (4 min).mkv4.77MB
  107. 9 - 1 - Cost Function (7 min).mkv7.56MB
  108. 9 - 2 - Backpropagation Algorithm (12 min).mkv13.75MB
  109. 9 - 3 - Backpropagation Intuition (13 min).mkv15.25MB
  110. 9 - 4 - Implementation Note_ Unrolling Parameters (8 min).mkv9.27MB
  111. 9 - 5 - Gradient Checking (12 min).mkv13.32MB
  112. 9 - 6 - Random Initialization (7 min).mkv7.46MB
  113. 9 - 7 - Putting It Together (14 min).mkv16.1MB
  114. 9 - 8 - Autonomous Driving (7 min).mkv14.79MB
  115. 教程和笔记/Stanford-Machine-Learning-Course-master/DecisionTrees &Boosting/noisy.dat2.06KB
  116. 教程和笔记/Stanford-Machine-Learning-Course-master/HMM/robot_no_momentum.data469.53KB
  117. 教程和笔记/Stanford-Machine-Learning-Course-master/HMM/robot_small.data159B
  118. 教程和笔记/Stanford-Machine-Learning-Course-master/HMM/robot_with_momentum.data469.53KB
  119. 教程和笔记/Stanford-Machine-Learning-Course-master/HMM/weather_all.data397.22KB
  120. 教程和笔记/Stanford-Machine-Learning-Course-master/HMM/weather_bos_la.data197.79KB
  121. 教程和笔记/Stanford-Machine-Learning-Course-master/HMM/weather_bos_sea.data208.69KB
  122. 教程和笔记/Stanford-Machine-Learning-Course-master/K-Means Clustering and PCA/mlclass-ex7/plotDataPoints.m434B
  123. 教程和笔记/Stanford-Machine-Learning-Course-master/Neural network learning/mlclass-ex4/checkNNGradients.m1.9KB
  124. 教程和笔记/Stanford-Machine-Learning-Course-master/Neural network learning/mlclass-ex4/debugInitializeWeights.m841B
  125. 教程和笔记/Stanford-Machine-Learning-Course-master/Neural network learning/mlclass-ex4/randInitializeWeights.m982B
  126. 机器学习课程2014源代码/mlclass-ex4-jin/checkNNGradients.m1.9KB
  127. 机器学习课程2014源代码/mlclass-ex4-jin/debugInitializeWeights.m841B
  128. 机器学习课程2014源代码/mlclass-ex4-jin/randInitializeWeights.m980B
  129. 机器学习课程2014源代码/mlclass-ex7-jin/plotDataPoints.m434B
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统