首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Data Science and Machine Learning Bootcamp with R

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-7-10 12:25 2025-1-8 06:15 200 2.29 GB 119
二维码链接
[DesireCourse.Net] Udemy - Data Science and Machine Learning Bootcamp with R的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Course Introduction/1. Introduction to Course.mp412.43MB
  2. 1. Course Introduction/2. Course Curriculum.mp45.71MB
  3. 1. Course Introduction/3. What is Data Science.mp47.01MB
  4. 10. R Lists/1. List Basics.mp419.57MB
  5. 11. Data Input and Output with R/1. Introduction to Data Input and Output with R.mp4869.69KB
  6. 11. Data Input and Output with R/2. CSV Files with R.mp412.2MB
  7. 11. Data Input and Output with R/3. Excel Files with R.mp424.17MB
  8. 11. Data Input and Output with R/4. SQL with R.mp425.48MB
  9. 11. Data Input and Output with R/5. Web Scraping with R.mp417.4MB
  10. 12. R Programming Basics/1. Introduction to Programming Basics.mp41.72MB
  11. 12. R Programming Basics/10. Functions Training Exercise - Solutions.mp436.75MB
  12. 12. R Programming Basics/2. Logical Operators.mp414.52MB
  13. 12. R Programming Basics/3. if, else, and else if Statements.mp425.92MB
  14. 12. R Programming Basics/4. Conditional Statements Training Exercise.mp43.48MB
  15. 12. R Programming Basics/5. Conditional Statements Training Exercise - Solutions Walkthrough.mp421.07MB
  16. 12. R Programming Basics/6. While Loops.mp412MB
  17. 12. R Programming Basics/7. For Loops.mp423.11MB
  18. 12. R Programming Basics/8. Functions.mp435.1MB
  19. 12. R Programming Basics/9. Functions Training Exercise.mp46.7MB
  20. 13. Advanced R Programming/1. Introduction to Advanced R Programming.mp41.61MB
  21. 13. Advanced R Programming/2. Built-in R Features.mp418.03MB
  22. 13. Advanced R Programming/3. Apply.mp428.07MB
  23. 13. Advanced R Programming/4. Math Functions with R.mp49.26MB
  24. 13. Advanced R Programming/5. Regular Expressions.mp49.73MB
  25. 13. Advanced R Programming/6. Dates and Timestamps.mp424.01MB
  26. 14. Data Manipulation with R/1. Data Manipulation Overview.mp41.17MB
  27. 14. Data Manipulation with R/2. Guide to Using Dplyr.mp425.14MB
  28. 14. Data Manipulation with R/3. Guide to Using Dplyr - Part 2.mp420.53MB
  29. 14. Data Manipulation with R/4. Pipe Operator.mp413.76MB
  30. 14. Data Manipulation with R/6. Dplyr Training Exercise.mp42.68MB
  31. 14. Data Manipulation with R/7. Dplyr Training Exercise - Solutions Walkthrough.mp413.79MB
  32. 14. Data Manipulation with R/8. Guide to Using Tidyr.mp447.1MB
  33. 15. Data Visualization with R/1. Overview of ggplot2.mp411.99MB
  34. 15. Data Visualization with R/10. ggplot2 Exercise Solutions.mp426.03MB
  35. 15. Data Visualization with R/2. Histograms.mp445.61MB
  36. 15. Data Visualization with R/3. Scatterplots.mp437.54MB
  37. 15. Data Visualization with R/4. Barplots.mp416.79MB
  38. 15. Data Visualization with R/5. Boxplots.mp414.08MB
  39. 15. Data Visualization with R/6. 2 Variable Plotting.mp420.41MB
  40. 15. Data Visualization with R/7. Coordinates and Faceting.mp424.08MB
  41. 15. Data Visualization with R/8. Themes.mp411.24MB
  42. 15. Data Visualization with R/9. ggplot2 Exercises.mp46.7MB
  43. 16. Data Visualization Project/1. Data Visualization Project.mp411.61MB
  44. 16. Data Visualization Project/2. Data Visualization Project - Solutions Walkthrough - Part 1.mp432.6MB
  45. 16. Data Visualization Project/3. Data Visualization Project Solutions Walkthrough - Part 2.mp432.13MB
  46. 17. Interactive Visualizations with Plotly/1. Overview of Plotly and Interactive Visualizations.mp433.53MB
  47. 18. Capstone Data Project/1. Introduction to Capstone Project.mp434.95MB
  48. 18. Capstone Data Project/2. Capstone Project Solutions Walkthrough.mp454.46MB
  49. 19. Introduction to Machine Learning with R/2. Introduction to Machine Learning.mp448.5MB
  50. 20. Machine Learning with R - Linear Regression/1. Introduction to Linear Regression.mp410.18MB
  51. 20. Machine Learning with R - Linear Regression/2. Linear Regression with R - Part 1.mp446.94MB
  52. 20. Machine Learning with R - Linear Regression/3. Linear Regression with R - Part 2.mp445.93MB
  53. 20. Machine Learning with R - Linear Regression/4. Linear Regression with R - Part 3.mp422.79MB
  54. 21. Machine Learning Project - Linear Regression/1. Introduction to Linear Regression Project.mp433.68MB
  55. 21. Machine Learning Project - Linear Regression/2. ML - Linear Regression Project - Solutions Part 1.mp447.75MB
  56. 21. Machine Learning Project - Linear Regression/3. ML - Linear Regression Project - Solutions Part 2.mp426.07MB
  57. 22. Machine Learning with R - Logistic Regression/1. Introduction to Logistic Regression.mp419.85MB
  58. 22. Machine Learning with R - Logistic Regression/2. Logistic Regression with R - Part 1.mp439.59MB
  59. 22. Machine Learning with R - Logistic Regression/3. Logistic Regression with R - Part 2.mp440.93MB
  60. 23. Machine Learning Project - Logistic Regression/1. Introduction to Logistic Regression Project.mp410.11MB
  61. 23. Machine Learning Project - Logistic Regression/2. Logistic Regression Project Solutions - Part 1.mp447.41MB
  62. 23. Machine Learning Project - Logistic Regression/3. Logistic Regression Project Solutions - Part 2.mp432.85MB
  63. 23. Machine Learning Project - Logistic Regression/4. Logistic Regression Project - Solutions Part 3.mp432.16MB
  64. 24. Machine Learning with R - K Nearest Neighbors/1. Introduction to K Nearest Neighbors.mp48.52MB
  65. 24. Machine Learning with R - K Nearest Neighbors/2. K Nearest Neighbors with R.mp440.41MB
  66. 25. Machine Learning Project - K Nearest Neighbors/1. Introduction K Nearest Neighbors Project.mp411.72MB
  67. 25. Machine Learning Project - K Nearest Neighbors/2. K Nearest Neighbors Project Solutions.mp425.18MB
  68. 26. Machine Learning with R - Decision Trees and Random Forests/1. Introduction to Tree Methods.mp411.26MB
  69. 26. Machine Learning with R - Decision Trees and Random Forests/2. Decision Trees and Random Forests with R.mp428.82MB
  70. 27. Machine Learning Project - Decision Trees and Random Forests/1. Introduction to Decision Trees and Random Forests Project.mp48.44MB
  71. 27. Machine Learning Project - Decision Trees and Random Forests/2. Tree Methods Project Solutions - Part 1.mp433.42MB
  72. 27. Machine Learning Project - Decision Trees and Random Forests/3. Tree Methods Project Solutions - Part 2.mp49.15MB
  73. 28. Machine Learning with R - Support Vector Machines/1. Introduction to Support Vector Machines.mp47.97MB
  74. 28. Machine Learning with R - Support Vector Machines/2. Support Vector Machines with R.mp432.98MB
  75. 29. Machine Learning Project - Support Vector Machines/1. Introduction to SVM Project.mp49.33MB
  76. 29. Machine Learning Project - Support Vector Machines/2. Support Vector Machines Project - Solutions Part 1.mp424.13MB
  77. 29. Machine Learning Project - Support Vector Machines/3. Support Vector Machines Project - Solutions Part 2.mp421.03MB
  78. 3. Windows Installation Set-Up/1. Windows Installation Procedure.mp417.76MB
  79. 30. Machine Learning with R - K-means Clustering/1. Introduction to K-Means Clustering.mp48.58MB
  80. 30. Machine Learning with R - K-means Clustering/2. K Means Clustering with R.mp419.2MB
  81. 31. Machine Learning Project - K-means Clustering/1. Introduction to K Means Clustering Project.mp47.23MB
  82. 31. Machine Learning Project - K-means Clustering/2. K Means Clustering Project - Solutions Walkthrough.mp432.96MB
  83. 32. Machine Learning with R - Natural Language Processing/1. Introduction to Natural Language Processing.mp47.58MB
  84. 32. Machine Learning with R - Natural Language Processing/2. Natural Language Processing with R - Part 1.mp410.44MB
  85. 32. Machine Learning with R - Natural Language Processing/3. Natural Language Processing with R - Part 2.mp435.69MB
  86. 33. Machine Learning with R - Neural Nets/1. Introduction to Neural Nets.mp411.22MB
  87. 33. Machine Learning with R - Neural Nets/2. Neural Nets with R.mp446.27MB
  88. 34. Machine Learning Project - Neural Nets/1. Introduction to Neural Nets Project.mp48.38MB
  89. 34. Machine Learning Project - Neural Nets/2. Neural Nets Project - Solutions.mp420.61MB
  90. 4. Mac OS Installation Set-Up/1. Mac OS Installation Procedure.mp420.84MB
  91. 6. Development Environment Overview/1. Development Environment Overview.mp4870.33KB
  92. 6. Development Environment Overview/2. Course Notes.mp425.72MB
  93. 6. Development Environment Overview/3. Guide to RStudio.mp428.32MB
  94. 7. Introduction to R Basics/1. Introduction to R Basics.mp45.64MB
  95. 7. Introduction to R Basics/10. R Basics Training Exercise.mp45.38MB
  96. 7. Introduction to R Basics/11. R Basics Training Exercise - Solutions Walkthrough.mp412.79MB
  97. 7. Introduction to R Basics/2. Arithmetic in R.mp47.7MB
  98. 7. Introduction to R Basics/3. Variables.mp48.93MB
  99. 7. Introduction to R Basics/4. R Basic Data Types.mp49.07MB
  100. 7. Introduction to R Basics/5. Vector Basics.mp413.66MB
  101. 7. Introduction to R Basics/6. Vector Operations.mp47.55MB
  102. 7. Introduction to R Basics/7. Comparison Operators.mp410.71MB
  103. 7. Introduction to R Basics/8. Vector Indexing and Slicing.mp416.07MB
  104. 7. Introduction to R Basics/9. Getting Help with R and RStudio.mp45.63MB
  105. 8. R Matrices/1. Introduction to R Matrices.mp41.46MB
  106. 8. R Matrices/2. Creating a Matrix.mp418.64MB
  107. 8. R Matrices/3. Matrix Arithmetic.mp47.79MB
  108. 8. R Matrices/4. Matrix Operations.mp410.77MB
  109. 8. R Matrices/5. Matrix Selection and Indexing.mp411.78MB
  110. 8. R Matrices/6. Factor and Categorical Matrices.mp414.84MB
  111. 8. R Matrices/7. Matrix Training Exercise.mp43.25MB
  112. 8. R Matrices/8. Matrix Training Exercises - Solutions Walkthrough.mp424.63MB
  113. 9. R Data Frames/1. Introduction to R Data Frames.mp41.36MB
  114. 9. R Data Frames/2. Data Frame Basics.mp418.21MB
  115. 9. R Data Frames/3. Data Frame Indexing and Selection.mp416.81MB
  116. 9. R Data Frames/4. Overview of Data Frame Operations - Part 1.mp430.44MB
  117. 9. R Data Frames/5. Overview of Data Frame Operations - Part 2.mp434.14MB
  118. 9. R Data Frames/6. Data Frame Training Exercise.mp44.27MB
  119. 9. R Data Frames/7. Data Frame Training Exercises - Solutions Walkthrough.mp428.97MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统