首页 磁力链接怎么用

[GigaCourse.Com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2022-8-13 19:38 2025-1-6 14:55 145 8.27 GB 398
二维码链接
[GigaCourse.Com] Udemy - The Data Science Course 2022 Complete Data Science Bootcamp的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01 - Part 1 Introduction/001 A Practical Example What You Will Learn in This Course.mp443.88MB
  2. 01 - Part 1 Introduction/002 What Does the Course Cover.mp449.69MB
  3. 02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords Why are there so Many.mp454.72MB
  4. 02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics.mp411.05MB
  5. 02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science An Introduction.mp449.96MB
  6. 02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI.mp435.94MB
  7. 02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic.mp433.95MB
  8. 03 - The Field of Data Science - Connecting the Data Science Disciplines/001 Applying Traditional Data, Big Data, BI, Traditional Data Science and ML.mp482.02MB
  9. 04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines.mp445.87MB
  10. 05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data.mp4105.52MB
  11. 05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data.mp413.92MB
  12. 05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data.mp460.48MB
  13. 05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data.mp412.69MB
  14. 05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques.mp451.34MB
  15. 05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI).mp419.35MB
  16. 05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods.mp474.75MB
  17. 05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods.mp421.17MB
  18. 05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques.mp447.78MB
  19. 05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning.mp461.78MB
  20. 05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML).mp422.44MB
  21. 06 - The Field of Data Science - Popular Data Science Tools/001 Necessary Programming Languages and Software Used in Data Science.mp466.73MB
  22. 07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for.mp433.09MB
  23. 08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions.mp457.86MB
  24. 09 - Part 2 Probability/001 The Basic Probability Formula.mp429.13MB
  25. 09 - Part 2 Probability/002 Computing Expected Values.mp429.24MB
  26. 09 - Part 2 Probability/003 Frequency.mp436.39MB
  27. 09 - Part 2 Probability/004 Events and Their Complements.mp420.83MB
  28. 10 - Probability - Combinatorics/001 Fundamentals of Combinatorics.mp44.63MB
  29. 10 - Probability - Combinatorics/002 Permutations and How to Use Them.mp413.97MB
  30. 10 - Probability - Combinatorics/003 Simple Operations with Factorials.mp413.98MB
  31. 10 - Probability - Combinatorics/004 Solving Variations with Repetition.mp413.75MB
  32. 10 - Probability - Combinatorics/005 Solving Variations without Repetition.mp414.76MB
  33. 10 - Probability - Combinatorics/006 Solving Combinations.mp418.99MB
  34. 10 - Probability - Combinatorics/007 Symmetry of Combinations.mp413.5MB
  35. 10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces.mp412.87MB
  36. 10 - Probability - Combinatorics/009 Combinatorics in Real-Life The Lottery.mp416.16MB
  37. 10 - Probability - Combinatorics/010 A Recap of Combinatorics.mp412MB
  38. 10 - Probability - Combinatorics/011 A Practical Example of Combinatorics.mp442.24MB
  39. 11 - Probability - Bayesian Inference/001 Sets and Events.mp417.44MB
  40. 11 - Probability - Bayesian Inference/002 Ways Sets Can Interact.mp419.02MB
  41. 11 - Probability - Bayesian Inference/003 Intersection of Sets.mp48.78MB
  42. 11 - Probability - Bayesian Inference/004 Union of Sets.mp419.47MB
  43. 11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets.mp48.57MB
  44. 11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets.mp411.98MB
  45. 11 - Probability - Bayesian Inference/007 The Conditional Probability Formula.mp416.33MB
  46. 11 - Probability - Bayesian Inference/008 The Law of Total Probability.mp411.39MB
  47. 11 - Probability - Bayesian Inference/009 The Additive Rule.mp410.89MB
  48. 11 - Probability - Bayesian Inference/010 The Multiplication Law.mp419.8MB
  49. 11 - Probability - Bayesian Inference/011 Bayes' Law.mp420.94MB
  50. 11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference.mp4125.49MB
  51. 12 - Probability - Distributions/001 Fundamentals of Probability Distributions.mp419.28MB
  52. 12 - Probability - Distributions/002 Types of Probability Distributions.mp428.69MB
  53. 12 - Probability - Distributions/003 Characteristics of Discrete Distributions.mp49.25MB
  54. 12 - Probability - Distributions/004 Discrete Distributions The Uniform Distribution.mp410.08MB
  55. 12 - Probability - Distributions/005 Discrete Distributions The Bernoulli Distribution.mp414.76MB
  56. 12 - Probability - Distributions/006 Discrete Distributions The Binomial Distribution.mp424.94MB
  57. 12 - Probability - Distributions/007 Discrete Distributions The Poisson Distribution.mp414.62MB
  58. 12 - Probability - Distributions/008 Characteristics of Continuous Distributions.mp428.87MB
  59. 12 - Probability - Distributions/009 Continuous Distributions The Normal Distribution.mp419.67MB
  60. 12 - Probability - Distributions/010 Continuous Distributions The Standard Normal Distribution.mp420.72MB
  61. 12 - Probability - Distributions/011 Continuous Distributions The Students' T Distribution.mp49.1MB
  62. 12 - Probability - Distributions/012 Continuous Distributions The Chi-Squared Distribution.mp410.95MB
  63. 12 - Probability - Distributions/013 Continuous Distributions The Exponential Distribution.mp415.76MB
  64. 12 - Probability - Distributions/014 Continuous Distributions The Logistic Distribution.mp415.95MB
  65. 12 - Probability - Distributions/015 A Practical Example of Probability Distributions.mp4138.31MB
  66. 13 - Probability - Probability in Other Fields/001 Probability in Finance.mp439.66MB
  67. 13 - Probability - Probability in Other Fields/002 Probability in Statistics.mp418.37MB
  68. 13 - Probability - Probability in Other Fields/003 Probability in Data Science.mp423.94MB
  69. 14 - Part 3 Statistics/001 Population and Sample.mp434.16MB
  70. 15 - Statistics - Descriptive Statistics/001 Types of Data.mp442.47MB
  71. 15 - Statistics - Descriptive Statistics/002 Levels of Measurement.mp431.44MB
  72. 15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques.mp436.65MB
  73. 15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table.mp412.8MB
  74. 15 - Statistics - Descriptive Statistics/007 The Histogram.mp49.59MB
  75. 15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots.mp419.69MB
  76. 15 - Statistics - Descriptive Statistics/011 Mean, median and mode.mp417.53MB
  77. 15 - Statistics - Descriptive Statistics/013 Skewness.mp49.92MB
  78. 15 - Statistics - Descriptive Statistics/015 Variance.mp420.2MB
  79. 15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation.mp420.14MB
  80. 15 - Statistics - Descriptive Statistics/019 Covariance.mp418.41MB
  81. 15 - Statistics - Descriptive Statistics/021 Correlation Coefficient.mp419.38MB
  82. 16 - Statistics - Practical Example Descriptive Statistics/001 Practical Example Descriptive Statistics.mp4150.18MB
  83. 17 - Statistics - Inferential Statistics Fundamentals/001 Introduction.mp43.02MB
  84. 17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution.mp416.9MB
  85. 17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution.mp416.16MB
  86. 17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution.mp48.62MB
  87. 17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem.mp422.86MB
  88. 17 - Statistics - Inferential Statistics Fundamentals/007 Standard error.mp413.33MB
  89. 17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates.mp416.13MB
  90. 18 - Statistics - Inferential Statistics Confidence Intervals/001 What are Confidence Intervals.mp428.38MB
  91. 18 - Statistics - Inferential Statistics Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score.mp452.21MB
  92. 18 - Statistics - Inferential Statistics Confidence Intervals/004 Confidence Interval Clarifications.mp418.56MB
  93. 18 - Statistics - Inferential Statistics Confidence Intervals/005 Student's T Distribution.mp413.33MB
  94. 18 - Statistics - Inferential Statistics Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score.mp411.58MB
  95. 18 - Statistics - Inferential Statistics Confidence Intervals/008 Margin of Error.mp422.66MB
  96. 18 - Statistics - Inferential Statistics Confidence Intervals/009 Confidence intervals. Two means. Dependent samples.mp445.04MB
  97. 18 - Statistics - Inferential Statistics Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1).mp412MB
  98. 18 - Statistics - Inferential Statistics Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2).mp413.05MB
  99. 18 - Statistics - Inferential Statistics Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3).mp46.82MB
  100. 19 - Statistics - Practical Example Inferential Statistics/001 Practical Example Inferential Statistics.mp469.04MB
  101. 20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis.mp480.83MB
  102. 20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level.mp438.2MB
  103. 20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error.mp418.17MB
  104. 20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known.mp436.96MB
  105. 20 - Statistics - Hypothesis Testing/007 p-value.mp433.08MB
  106. 20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown.mp419.72MB
  107. 20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples.mp432.8MB
  108. 20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1).mp415.43MB
  109. 20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2).mp424.47MB
  110. 21 - Statistics - Practical Example Hypothesis Testing/001 Practical Example Hypothesis Testing.mp445.84MB
  111. 22 - Part 4 Introduction to Python/001 Introduction to Programming.mp414.33MB
  112. 22 - Part 4 Introduction to Python/002 Why Python.mp411.77MB
  113. 22 - Part 4 Introduction to Python/003 Why Jupyter.mp47.96MB
  114. 22 - Part 4 Introduction to Python/004 Installing Python and Jupyter.mp432.86MB
  115. 22 - Part 4 Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard.mp46.06MB
  116. 22 - Part 4 Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks.mp415.38MB
  117. 23 - Python - Variables and Data Types/001 Variables.mp48.93MB
  118. 23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python.mp46.56MB
  119. 23 - Python - Variables and Data Types/003 Python Strings.mp419.73MB
  120. 24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python.mp47.28MB
  121. 24 - Python - Basic Python Syntax/002 The Double Equality Sign.mp42.72MB
  122. 24 - Python - Basic Python Syntax/003 How to Reassign Values.mp41.86MB
  123. 24 - Python - Basic Python Syntax/004 Add Comments.mp42.41MB
  124. 24 - Python - Basic Python Syntax/005 Understanding Line Continuation.mp41.2MB
  125. 24 - Python - Basic Python Syntax/006 Indexing Elements.mp42.36MB
  126. 24 - Python - Basic Python Syntax/007 Structuring with Indentation.mp42.8MB
  127. 25 - Python - Other Python Operators/001 Comparison Operators.mp44.16MB
  128. 25 - Python - Other Python Operators/002 Logical and Identity Operators.mp419MB
  129. 26 - Python - Conditional Statements/001 The IF Statement.mp45.33MB
  130. 26 - Python - Conditional Statements/002 The ELSE Statement.mp45.25MB
  131. 26 - Python - Conditional Statements/003 The ELIF Statement.mp414.25MB
  132. 26 - Python - Conditional Statements/004 A Note on Boolean Values.mp44.24MB
  133. 27 - Python - Python Functions/001 Defining a Function in Python.mp43.23MB
  134. 27 - Python - Python Functions/002 How to Create a Function with a Parameter.mp48.29MB
  135. 27 - Python - Python Functions/003 Defining a Function in Python - Part II.mp46.45MB
  136. 27 - Python - Python Functions/004 How to Use a Function within a Function.mp43.25MB
  137. 27 - Python - Python Functions/005 Conditional Statements and Functions.mp46.04MB
  138. 27 - Python - Python Functions/006 Functions Containing a Few Arguments.mp42.83MB
  139. 27 - Python - Python Functions/007 Built-in Functions in Python.mp48.5MB
  140. 28 - Python - Sequences/001 Lists.mp420.5MB
  141. 28 - Python - Sequences/002 Using Methods.mp423.41MB
  142. 28 - Python - Sequences/003 List Slicing.mp419.17MB
  143. 28 - Python - Sequences/004 Tuples.mp416.27MB
  144. 28 - Python - Sequences/005 Dictionaries.mp424.91MB
  145. 29 - Python - Iterations/001 For Loops.mp423.58MB
  146. 29 - Python - Iterations/002 While Loops and Incrementing.mp420.2MB
  147. 29 - Python - Iterations/003 Lists with the range() Function.mp414.5MB
  148. 29 - Python - Iterations/004 Conditional Statements and Loops.mp421.94MB
  149. 29 - Python - Iterations/005 Conditional Statements, Functions, and Loops.mp44.27MB
  150. 29 - Python - Iterations/006 How to Iterate over Dictionaries.mp416.46MB
  151. 30 - Python - Advanced Python Tools/001 Object Oriented Programming.mp48.42MB
  152. 30 - Python - Advanced Python Tools/002 Modules and Packages.mp42MB
  153. 30 - Python - Advanced Python Tools/003 What is the Standard Library.mp44.87MB
  154. 30 - Python - Advanced Python Tools/004 Importing Modules in Python.mp48.53MB
  155. 31 - Part 5 Advanced Statistical Methods in Python/001 Introduction to Regression Analysis.mp43.5MB
  156. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model.mp413.16MB
  157. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression.mp43.75MB
  158. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/003 Geometrical Representation of the Linear Regression Model.mp42.19MB
  159. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation.mp423.7MB
  160. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python.mp429.63MB
  161. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs.mp47.37MB
  162. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table.mp428.72MB
  163. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability.mp48.62MB
  164. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS.mp422.44MB
  165. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared.mp410.79MB
  166. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression.mp45.54MB
  167. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared.mp434.22MB
  168. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test).mp45.9MB
  169. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions.mp45.12MB
  170. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1 Linearity.mp43.45MB
  171. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2 No Endogeneity.mp48.99MB
  172. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3 Normality and Homoscedasticity.mp427.39MB
  173. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4 No Autocorrelation.mp47.67MB
  174. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5 No Multicollinearity.mp47.36MB
  175. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/011 Dealing with Categorical Data - Dummy Variables.mp435.09MB
  176. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/013 Making Predictions with the Linear Regression.mp416.36MB
  177. 34 - Advanced Statistical Methods - Linear Regression with sklearn/001 What is sklearn and How is it Different from Other Packages.mp46.24MB
  178. 34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section.mp45.24MB
  179. 34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn.mp431.65MB
  180. 34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp428.88MB
  181. 34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn.mp49.81MB
  182. 34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn.mp416.92MB
  183. 34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression).mp415.68MB
  184. 34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values.mp46.45MB
  185. 34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization).mp420.37MB
  186. 34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights.mp427.16MB
  187. 34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients.mp418.34MB
  188. 34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting.mp45.69MB
  189. 34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained.mp435.57MB
  190. 35 - Advanced Statistical Methods - Practical Example Linear Regression/001 Practical Example Linear Regression (Part 1).mp484.83MB
  191. 35 - Advanced Statistical Methods - Practical Example Linear Regression/002 Practical Example Linear Regression (Part 2).mp431.9MB
  192. 35 - Advanced Statistical Methods - Practical Example Linear Regression/004 Practical Example Linear Regression (Part 3).mp416.68MB
  193. 35 - Advanced Statistical Methods - Practical Example Linear Regression/006 Practical Example Linear Regression (Part 4).mp429.84MB
  194. 35 - Advanced Statistical Methods - Practical Example Linear Regression/008 Practical Example Linear Regression (Part 5).mp450.42MB
  195. 36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression.mp44.16MB
  196. 36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python.mp421.91MB
  197. 36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function.mp443.96MB
  198. 36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression.mp48.61MB
  199. 36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip.mp416.77MB
  200. 36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables.mp412.89MB
  201. 36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean.mp411.38MB
  202. 36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression.mp418.47MB
  203. 36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model.mp420.28MB
  204. 36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting.mp47.25MB
  205. 36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model.mp421.6MB
  206. 37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis.mp410.66MB
  207. 37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters.mp435.12MB
  208. 37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering.mp49.53MB
  209. 37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites.mp45.1MB
  210. 38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering.mp410.52MB
  211. 38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering.mp426.08MB
  212. 38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data.mp410.35MB
  213. 38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters.mp419.79MB
  214. 38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering.mp410.93MB
  215. 38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize.mp410.5MB
  216. 38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression.mp43.39MB
  217. 38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1).mp421.15MB
  218. 38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2).mp434.08MB
  219. 38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful.mp436.49MB
  220. 39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering.mp48.9MB
  221. 39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram.mp417.34MB
  222. 39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.mp425.71MB
  223. 40 - Part 6 Mathematics/001 What is a Matrix.mp411.7MB
  224. 40 - Part 6 Mathematics/002 Scalars and Vectors.mp48.39MB
  225. 40 - Part 6 Mathematics/003 Linear Algebra and Geometry.mp413.56MB
  226. 40 - Part 6 Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices.mp419.01MB
  227. 40 - Part 6 Mathematics/005 What is a Tensor.mp411.61MB
  228. 40 - Part 6 Mathematics/006 Addition and Subtraction of Matrices.mp422.08MB
  229. 40 - Part 6 Mathematics/007 Errors when Adding Matrices.mp46.46MB
  230. 40 - Part 6 Mathematics/008 Transpose of a Matrix.mp420.49MB
  231. 40 - Part 6 Mathematics/009 Dot Product.mp411.36MB
  232. 40 - Part 6 Mathematics/010 Dot Product of Matrices.mp426.42MB
  233. 40 - Part 6 Mathematics/011 Why is Linear Algebra Useful.mp486.18MB
  234. 41 - Part 7 Deep Learning/001 What to Expect from this Part.mp49.29MB
  235. 42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks.mp410.37MB
  236. 42 - Deep Learning - Introduction to Neural Networks/002 Training the Model.mp47.57MB
  237. 42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning.mp49.81MB
  238. 42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version).mp47.87MB
  239. 42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs.mp47.77MB
  240. 42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs.mp416.23MB
  241. 42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks.mp46.35MB
  242. 42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function.mp46.03MB
  243. 42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions L2-norm Loss.mp45.41MB
  244. 42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions Cross-Entropy Loss.mp49.68MB
  245. 42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm 1-Parameter Gradient Descent.mp422.7MB
  246. 42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm n-Parameter Gradient Descent.mp416.35MB
  247. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1).mp49.34MB
  248. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2).mp415.23MB
  249. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3).mp415.68MB
  250. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4).mp430.06MB
  251. 44 - Deep Learning - TensorFlow 2.0 Introduction/001 How to Install TensorFlow 2.0.mp427.34MB
  252. 44 - Deep Learning - TensorFlow 2.0 Introduction/002 TensorFlow Outline and Comparison with Other Libraries.mp414.94MB
  253. 44 - Deep Learning - TensorFlow 2.0 Introduction/003 TensorFlow 1 vs TensorFlow 2.mp414.94MB
  254. 44 - Deep Learning - TensorFlow 2.0 Introduction/004 A Note on TensorFlow 2 Syntax.mp42.76MB
  255. 44 - Deep Learning - TensorFlow 2.0 Introduction/005 Types of File Formats Supporting TensorFlow.mp47.25MB
  256. 44 - Deep Learning - TensorFlow 2.0 Introduction/006 Outlining the Model with TensorFlow 2.mp426.99MB
  257. 44 - Deep Learning - TensorFlow 2.0 Introduction/007 Interpreting the Result and Extracting the Weights and Bias.mp413.67MB
  258. 44 - Deep Learning - TensorFlow 2.0 Introduction/008 Customizing a TensorFlow 2 Model.mp416.78MB
  259. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/001 What is a Layer.mp44.96MB
  260. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/002 What is a Deep Net.mp411.06MB
  261. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/003 Digging into a Deep Net.mp419.14MB
  262. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/004 Non-Linearities and their Purpose.mp49.74MB
  263. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/005 Activation Functions.mp48.53MB
  264. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/006 Activation Functions Softmax Activation.mp48.42MB
  265. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/007 Backpropagation.mp419.49MB
  266. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/008 Backpropagation Picture.mp47.68MB
  267. 46 - Deep Learning - Overfitting/001 What is Overfitting.mp410.5MB
  268. 46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification.mp413.53MB
  269. 46 - Deep Learning - Overfitting/003 What is Validation.mp48.14MB
  270. 46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets.mp47.74MB
  271. 46 - Deep Learning - Overfitting/005 N-Fold Cross Validation.mp46.03MB
  272. 46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training.mp48.5MB
  273. 47 - Deep Learning - Initialization/001 What is Initialization.mp417.42MB
  274. 47 - Deep Learning - Initialization/002 Types of Simple Initializations.mp45.73MB
  275. 47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp45.24MB
  276. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent.mp47.62MB
  277. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent.mp43.51MB
  278. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum.mp45.01MB
  279. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/004 Learning Rate Schedules, or How to Choose the Optimal Learning Rate.mp412.03MB
  280. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized.mp43.07MB
  281. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/006 Adaptive Learning Rate Schedules (AdaGrad and RMSprop ).mp48.24MB
  282. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation).mp46.88MB
  283. 49 - Deep Learning - Preprocessing/001 Preprocessing Introduction.mp48.98MB
  284. 49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing.mp43.19MB
  285. 49 - Deep Learning - Preprocessing/003 Standardization.mp411.95MB
  286. 49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data.mp45.34MB
  287. 49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding.mp48.36MB
  288. 50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST The Dataset.mp44.4MB
  289. 50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST.mp47.66MB
  290. 50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST Importing the Relevant Packages and Loading the Data.mp412.24MB
  291. 50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp422.93MB
  292. 50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST Preprocess the Data - Shuffle and Batch.mp432.71MB
  293. 50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST Outline the Model.mp422.09MB
  294. 50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST Select the Loss and the Optimizer.mp410.65MB
  295. 50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST Learning.mp431.03MB
  296. 50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST Testing the Model.mp422.64MB
  297. 51 - Deep Learning - Business Case Example/001 Business Case Exploring the Dataset and Identifying Predictors.mp451.38MB
  298. 51 - Deep Learning - Business Case Example/002 Business Case Outlining the Solution.mp42.95MB
  299. 51 - Deep Learning - Business Case Example/003 Business Case Balancing the Dataset.mp426.19MB
  300. 51 - Deep Learning - Business Case Example/004 Business Case Preprocessing the Data.mp473.82MB
  301. 51 - Deep Learning - Business Case Example/006 Business Case Load the Preprocessed Data.mp413.8MB
  302. 51 - Deep Learning - Business Case Example/008 Business Case Learning and Interpreting the Result.mp427.77MB
  303. 51 - Deep Learning - Business Case Example/009 Business Case Setting an Early Stopping Mechanism.mp443.81MB
  304. 51 - Deep Learning - Business Case Example/011 Business Case Testing the Model.mp48.19MB
  305. 52 - Deep Learning - Conclusion/001 Summary on What You've Learned.mp49.66MB
  306. 52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning.mp44.73MB
  307. 52 - Deep Learning - Conclusion/004 An overview of CNNs.mp430.47MB
  308. 52 - Deep Learning - Conclusion/005 An Overview of RNNs.mp46.75MB
  309. 52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches.mp415.65MB
  310. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/002 How to Install TensorFlow 1.mp44.85MB
  311. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/004 TensorFlow Intro.mp416.56MB
  312. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/005 Actual Introduction to TensorFlow.mp46.17MB
  313. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/006 Types of File Formats, supporting Tensors.mp48.9MB
  314. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp428MB
  315. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/008 Basic NN Example with TF Loss Function and Gradient Descent.mp415.72MB
  316. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/009 Basic NN Example with TF Model Output.mp417.09MB
  317. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/001 MNIST What is the MNIST Dataset.mp44.65MB
  318. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST.mp47.68MB
  319. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/003 MNIST Relevant Packages.mp47.88MB
  320. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/004 MNIST Model Outline.mp434.69MB
  321. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/005 MNIST Loss and Optimization Algorithm.mp411.55MB
  322. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model.mp416.64MB
  323. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/007 MNIST Batching and Early Stopping.mp48.7MB
  324. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/008 MNIST Learning.mp431.87MB
  325. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/009 MNIST Results and Testing.mp438.19MB
  326. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/001 Business Case Getting Acquainted with the Dataset.mp460.26MB
  327. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/002 Business Case Outlining the Solution.mp44.04MB
  328. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/003 The Importance of Working with a Balanced Dataset.mp421.6MB
  329. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 Business Case Preprocessing.mp474.39MB
  330. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/006 Creating a Data Provider.mp456.23MB
  331. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/007 Business Case Model Outline.mp442.48MB
  332. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/008 Business Case Optimization.mp426.95MB
  333. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/009 Business Case Interpretation.mp418.59MB
  334. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/010 Business Case Testing the Model.mp44.39MB
  335. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 Business Case A Comment on the Homework.mp419.64MB
  336. 56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses.mp419.17MB
  337. 56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints.mp458.83MB
  338. 56 - Software Integration/003 Taking a Closer Look at APIs.mp465.29MB
  339. 56 - Software Integration/004 Communication between Software Products through Text Files.mp417.26MB
  340. 56 - Software Integration/005 Software Integration - Explained.mp441.99MB
  341. 57 - Case Study - What's Next in the Course/001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp415.8MB
  342. 57 - Case Study - What's Next in the Course/002 The Business Task.mp411.08MB
  343. 57 - Case Study - What's Next in the Course/003 Introducing the Data Set.mp415.29MB
  344. 58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python.mp418.03MB
  345. 58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set.mp454.27MB
  346. 58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings.mp418.04MB
  347. 58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise.mp49.9MB
  348. 58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python.mp441.3MB
  349. 58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence.mp427.63MB
  350. 58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature.mp463.77MB
  351. 58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables A Statistical Perspective.mp45.82MB
  352. 58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence.mp451.32MB
  353. 58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python.mp419.77MB
  354. 58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python.mp47.18MB
  355. 58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter.mp417.34MB
  356. 58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set.mp440.13MB
  357. 58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the Date Column.mp438.91MB
  358. 58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the Date Column.mp49.12MB
  359. 58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several Straightforward Columns for this Exercise.mp412.23MB
  360. 58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on Education, Children, and Pets.mp419.69MB
  361. 58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section.mp417.04MB
  362. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/001 Exploring the Problem with a Machine Learning Mindset.mp411.08MB
  363. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/002 Creating the Targets for the Logistic Regression.mp432.5MB
  364. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/003 Selecting the Inputs for the Logistic Regression.mp49.81MB
  365. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data.mp415.14MB
  366. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing.mp436.12MB
  367. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy.mp435.29MB
  368. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/007 Creating a Summary Table with the Coefficients and Intercept.mp426.98MB
  369. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem.mp434.4MB
  370. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/009 Standardizing only the Numerical Variables (Creating a Custom Scaler).mp428.02MB
  371. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/010 Interpreting the Coefficients of the Logistic Regression.mp415.22MB
  372. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/011 Backward Elimination or How to Simplify Your Model.mp431.96MB
  373. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created.mp431.63MB
  374. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/013 Saving the Model and Preparing it for Deployment.mp425.52MB
  375. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/016 Preparing the Deployment of the Model through a Module.mp428.57MB
  376. 60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I.mp416.93MB
  377. 60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II.mp425.99MB
  378. 61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau.mp438.69MB
  379. 61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau.mp440.24MB
  380. 61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau.mp416.48MB
  381. 62 - Appendix - Additional Python Tools/001 Using the .format() Method.mp421.66MB
  382. 62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects.mp411.07MB
  383. 62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops.mp412.26MB
  384. 62 - Appendix - Additional Python Tools/004 Triple Nested For Loops.mp419.4MB
  385. 62 - Appendix - Additional Python Tools/005 List Comprehensions.mp443.23MB
  386. 62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions.mp433.71MB
  387. 63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series.mp422.22MB
  388. 63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I.mp416.8MB
  389. 63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II.mp48.99MB
  390. 63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas.mp415.45MB
  391. 63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique().mp426.33MB
  392. 63 - Appendix - pandas Fundamentals/006 Using .sort_values().mp413.2MB
  393. 63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I.mp410.6MB
  394. 63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II.mp417.83MB
  395. 63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes.mp429.8MB
  396. 63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames.mp437.28MB
  397. 63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[].mp423.54MB
  398. 63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[].mp420.72MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统