首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[CourseClub.NET] Coursera - Machine Learning
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-3-6 04:10
2024-11-4 22:10
110
1.81 GB
113
磁力链接
magnet:?xt=urn:btih:eb46b659343d7111e04ff448748e9542ba50c169
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmViNDZiNjU5MzQzZDcxMTFlMDRmZjQ0ODc0OGU5NTQyYmE1MGMxNjlaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
CourseClub
NET
Coursera
-
Machine
Learning
文件列表
001.Welcome/001. Welcome to Machine Learning!.mp4
9.13MB
002.Introduction/002. Welcome.mp4
18.28MB
002.Introduction/003. What is Machine Learning.mp4
11.41MB
002.Introduction/004. Supervised Learning.mp4
16.68MB
002.Introduction/005. Unsupervised Learning.mp4
23.33MB
003.Model and Cost Function/006. Model Representation.mp4
11.42MB
003.Model and Cost Function/007. Cost Function.mp4
11.51MB
003.Model and Cost Function/008. Cost Function - Intuition I.mp4
15.53MB
003.Model and Cost Function/009. Cost Function - Intuition II.mp4
16.99MB
004.Parameter Learning/010. Gradient Descent.mp4
18.72MB
004.Parameter Learning/011. Gradient Descent Intuition.mp4
16.61MB
004.Parameter Learning/012. Gradient Descent For Linear Regression.mp4
16.43MB
005.Linear Algebra Review/013. Matrices and Vectors.mp4
11.94MB
005.Linear Algebra Review/014. Addition and Scalar Multiplication.mp4
9.27MB
005.Linear Algebra Review/015. Matrix Vector Multiplication.mp4
18.93MB
005.Linear Algebra Review/016. Matrix Matrix Multiplication.mp4
16.29MB
005.Linear Algebra Review/017. Matrix Multiplication Properties.mp4
12.15MB
005.Linear Algebra Review/018. Inverse and Transpose.mp4
17.01MB
006.Multivariate Linear Regression/019. Multiple Features.mp4
11.58MB
006.Multivariate Linear Regression/020. Gradient Descent for Multiple Variables.mp4
7.62MB
006.Multivariate Linear Regression/021. Gradient Descent in Practice I - Feature Scaling.mp4
12.94MB
006.Multivariate Linear Regression/022. Gradient Descent in Practice II - Learning Rate.mp4
12.56MB
006.Multivariate Linear Regression/023. Features and Polynomial Regression.mp4
11.54MB
007.Computing Parameters Analytically/024. Normal Equation.mp4
23.63MB
007.Computing Parameters Analytically/025. Normal Equation Noninvertibility.mp4
8.8MB
008.Submitting Programming Assignments/026. Working on and Submitting Programming Assignments.mp4
8.96MB
009.Octave Matlab Tutorial/027. Basic Operations.mp4
24.9MB
009.Octave Matlab Tutorial/028. Moving Data Around.mp4
29.53MB
009.Octave Matlab Tutorial/029. Computing on Data.mp4
19.81MB
009.Octave Matlab Tutorial/030. Plotting Data.mp4
20.08MB
009.Octave Matlab Tutorial/031. Control Statements for, while, if statement.mp4
23.88MB
009.Octave Matlab Tutorial/032. Vectorization.mp4
22.27MB
010.Classification and Representation/033. Classification.mp4
11.32MB
010.Classification and Representation/034. Hypothesis Representation.mp4
11.17MB
010.Classification and Representation/035. Decision Boundary.mp4
22.19MB
011.Logistic Regression Model/036. Cost Function.mp4
15.83MB
011.Logistic Regression Model/037. Simplified Cost Function and Gradient Descent.mp4
16.26MB
011.Logistic Regression Model/038. Advanced Optimization.mp4
26.77MB
012.Multiclass Classification/039. Multiclass Classification One-vs-all.mp4
9.07MB
013.Solving the Problem of Overfitting/040. The Problem of Overfitting.mp4
14.93MB
013.Solving the Problem of Overfitting/041. Cost Function.mp4
15.51MB
013.Solving the Problem of Overfitting/042. Regularized Linear Regression.mp4
15.63MB
013.Solving the Problem of Overfitting/043. Regularized Logistic Regression.mp4
16.77MB
014.Motivations/044. Non-linear Hypotheses.mp4
14.74MB
014.Motivations/045. Neurons and the Brain.mp4
14.57MB
015.Neural Networks/046. Model Representation I.mp4
18MB
015.Neural Networks/047. Model Representation II.mp4
18.4MB
016.Applications/048. Examples and Intuitions I.mp4
10.07MB
016.Applications/049. Examples and Intuitions II.mp4
20.93MB
016.Applications/050. Multiclass Classification.mp4
7MB
017.Cost Function and Backpropagation/051. Cost Function.mp4
10.25MB
017.Cost Function and Backpropagation/052. Backpropagation Algorithm.mp4
19.07MB
017.Cost Function and Backpropagation/053. Backpropagation Intuition.mp4
22.23MB
018.Backpropagation in Practice/054. Implementation Note Unrolling Parameters.mp4
12.92MB
018.Backpropagation in Practice/055. Gradient Checking.mp4
18.35MB
018.Backpropagation in Practice/056. Random Initialization.mp4
9.81MB
018.Backpropagation in Practice/057. Putting It Together.mp4
23.55MB
019.Application of Neural Networks/058. Autonomous Driving.mp4
28.3MB
020.Evaluating a Learning Algorithm/059. Deciding What to Try Next.mp4
9.35MB
020.Evaluating a Learning Algorithm/060. Evaluating a Hypothesis.mp4
11.05MB
020.Evaluating a Learning Algorithm/061. Model Selection and Train Validation Test Sets.mp4
19.04MB
021.Bias vs. Variance/062. Diagnosing Bias vs. Variance.mp4
12.18MB
021.Bias vs. Variance/063. Regularization and Bias Variance.mp4
16.39MB
021.Bias vs. Variance/064. Learning Curves.mp4
16.39MB
021.Bias vs. Variance/065. Deciding What to Do Next Revisited.mp4
11.43MB
022.Building a Spam Classifier/066. Prioritizing What to Work On.mp4
15.06MB
022.Building a Spam Classifier/067. Error Analysis.mp4
21.27MB
023.Handling Skewed Data/068. Error Metrics for Skewed Classes.mp4
17.95MB
023.Handling Skewed Data/069. Trading Off Precision and Recall.mp4
21.3MB
024.Using Large Data Sets/070. Data For Machine Learning.mp4
17.31MB
025.Large Margin Classification/071. Optimization Objective.mp4
21.89MB
025.Large Margin Classification/072. Large Margin Intuition.mp4
15.21MB
025.Large Margin Classification/073. Mathematics Behind Large Margin Classification.mp4
28.48MB
026.Kernels/074. Kernels I.mp4
22.81MB
026.Kernels/075. Kernels II.mp4
22.63MB
027.SVMs in Practice/076. Using An SVM.mp4
31.99MB
028.Clustering/077. Unsupervised Learning Introduction.mp4
5.16MB
028.Clustering/078. K-Means Algorithm.mp4
17.67MB
028.Clustering/079. Optimization Objective.mp4
10.92MB
028.Clustering/080. Random Initialization.mp4
11.15MB
028.Clustering/081. Choosing the Number of Clusters.mp4
12.22MB
029.Motivation/082. Motivation I Data Compression.mp4
21.45MB
029.Motivation/083. Motivation II Visualization.mp4
8.3MB
030.Principal Component Analysis/084. Principal Component Analysis Problem Formulation.mp4
13.98MB
030.Principal Component Analysis/085. Principal Component Analysis Algorithm.mp4
24.29MB
031.Applying PCA/086. Reconstruction from Compressed Representation.mp4
7.16MB
031.Applying PCA/087. Choosing the Number of Principal Components.mp4
15.64MB
031.Applying PCA/088. Advice for Applying PCA.mp4
19.74MB
032.Density Estimation/089. Problem Motivation.mp4
10.56MB
032.Density Estimation/090. Gaussian Distribution.mp4
15.19MB
032.Density Estimation/091. Algorithm.mp4
18.94MB
033.Building an Anomaly Detection System/092. Developing and Evaluating an Anomaly Detection System.mp4
20.53MB
033.Building an Anomaly Detection System/093. Anomaly Detection vs. Supervised Learning.mp4
13.15MB
033.Building an Anomaly Detection System/094. Choosing What Features to Use.mp4
19.09MB
034.Multivariate Gaussian Distribution (Optional)/095. Multivariate Gaussian Distribution.mp4
21.86MB
034.Multivariate Gaussian Distribution (Optional)/096. Anomaly Detection using the Multivariate Gaussian Distribution.mp4
22.42MB
035.Predicting Movie Ratings/097. Problem Formulation.mp4
16.41MB
035.Predicting Movie Ratings/098. Content Based Recommendations.mp4
23.19MB
036.Collaborative Filtering/099. Collaborative Filtering.mp4
15.52MB
036.Collaborative Filtering/100. Collaborative Filtering Algorithm.mp4
14.71MB
037.Low Rank Matrix Factorization/101. Vectorization Low Rank Matrix Factorization.mp4
12.82MB
037.Low Rank Matrix Factorization/102. Implementational Detail Mean Normalization.mp4
12.91MB
038.Gradient Descent with Large Datasets/103. Learning With Large Datasets.mp4
8.54MB
038.Gradient Descent with Large Datasets/104. Stochastic Gradient Descent.mp4
20.99MB
038.Gradient Descent with Large Datasets/105. Mini-Batch Gradient Descent.mp4
9.75MB
038.Gradient Descent with Large Datasets/106. Stochastic Gradient Descent Convergence.mp4
18.11MB
039.Advanced Topics/107. Online Learning.mp4
20.51MB
039.Advanced Topics/108. Map Reduce and Data Parallelism.mp4
21.23MB
040.Photo OCR/109. Problem Description and Pipeline.mp4
10.42MB
040.Photo OCR/110. Sliding Windows.mp4
21.93MB
040.Photo OCR/111. Getting Lots of Data and Artificial Data.mp4
25.3MB
040.Photo OCR/112. Ceiling Analysis What Part of the Pipeline to Work on Next.mp4
21.92MB
041.Conclusion/113. Summary and Thank You.mp4
9.08MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统