首页 磁力链接怎么用

[CourseClub.Me] Coursera – Machine Learning Specialization (Andrew Ng)

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2023-3-13 21:43 2025-1-17 16:44 236 1.47 GB 136
二维码链接
[CourseClub.Me] Coursera – Machine Learning Specialization (Andrew Ng)的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/01_welcome-to-machine-learning.mp40B
  2. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/01_overview-of-machine-learning/02_applications-of-machine-learning.mp40B
  3. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/03_regression-model/01_linear-regression-model-part-1.mp40B
  4. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/03_regression-model/02_linear-regression-model-part-2.mp40B
  5. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/03_regression-model/03_cost-function-formula.mp40B
  6. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/03_regression-model/04_cost-function-intuition.mp40B
  7. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/03_regression-model/05_visualizing-the-cost-function.mp40B
  8. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/03_regression-model/06_visualization-examples.mp40B
  9. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/01_gradient-descent.mp40B
  10. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/02_implementing-gradient-descent.mp40B
  11. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/03_gradient-descent-intuition.mp40B
  12. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/04_learning-rate.mp40B
  13. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/05_gradient-descent-for-linear-regression.mp40B
  14. Coursera - Supervised Machine Learning Regression and Classification/01_week-1-introduction-to-machine-learning/04_train-the-model-with-gradient-descent/06_running-gradient-descent.mp40B
  15. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/01_multiple-features.mp40B
  16. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/02_vectorization-part-1.mp40B
  17. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/03_vectorization-part-2.mp40B
  18. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/01_multiple-linear-regression/04_gradient-descent-for-multiple-linear-regression.mp40B
  19. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/01_feature-scaling-part-1.mp40B
  20. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/02_feature-scaling-part-2.mp40B
  21. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/03_checking-gradient-descent-for-convergence.mp40B
  22. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/04_choosing-the-learning-rate.mp40B
  23. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/05_feature-engineering.mp40B
  24. Coursera - Supervised Machine Learning Regression and Classification/02_week-2-regression-with-multiple-input-variables/02_gradient-descent-in-practice/06_polynomial-regression.mp40B
  25. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/01_classification-with-logistic-regression/01_motivations.mp420.96MB
  26. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/01_classification-with-logistic-regression/02_logistic-regression.mp40B
  27. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/01_classification-with-logistic-regression/03_decision-boundary.mp40B
  28. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/02_cost-function-for-logistic-regression/01_cost-function-for-logistic-regression.mp40B
  29. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/02_cost-function-for-logistic-regression/02_simplified-cost-function-for-logistic-regression.mp40B
  30. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/03_gradient-descent-for-logistic-regression/01_gradient-descent-implementation.mp40B
  31. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/04_the-problem-of-overfitting/01_the-problem-of-overfitting.mp40B
  32. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/04_the-problem-of-overfitting/02_addressing-overfitting.mp415.73MB
  33. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/04_the-problem-of-overfitting/03_cost-function-with-regularization.mp40B
  34. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/04_the-problem-of-overfitting/04_regularized-linear-regression.mp40B
  35. Coursera - Supervised Machine Learning Regression and Classification/03_week-3-classification/04_the-problem-of-overfitting/05_regularized-logistic-regression.mp40B
  36. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/01_welcome-to-the-course/01_welcome.mp48.48MB
  37. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/02_clustering/01_what-is-clustering.mp48.82MB
  38. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/02_clustering/02_k-means-intuition.mp412.36MB
  39. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/02_clustering/03_k-means-algorithm.mp419.76MB
  40. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/02_clustering/04_optimization-objective.mp429.51MB
  41. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/02_clustering/05_initializing-k-means.mp417.84MB
  42. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/02_clustering/06_choosing-the-number-of-clusters.mp417.89MB
  43. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/04_anomaly-detection/01_finding-unusual-events.mp425.71MB
  44. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/04_anomaly-detection/02_gaussian-normal-distribution.mp420.6MB
  45. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/04_anomaly-detection/03_anomaly-detection-algorithm.mp421.53MB
  46. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/04_anomaly-detection/04_developing-and-evaluating-an-anomaly-detection-system.mp40B
  47. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/04_anomaly-detection/05_anomaly-detection-vs-supervised-learning.mp40B
  48. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/01_unsupervised-learning/04_anomaly-detection/06_choosing-what-features-to-use.mp431.93MB
  49. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/01_collaborative-filtering/01_making-recommendations.mp420.44MB
  50. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/01_collaborative-filtering/02_using-per-item-features.mp423.69MB
  51. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/01_collaborative-filtering/03_collaborative-filtering-algorithm.mp40B
  52. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/01_collaborative-filtering/04_binary-labels-favs-likes-and-clicks.mp40B
  53. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/03_recommender-systems-implementation-detail/01_mean-normalization.mp40B
  54. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/03_recommender-systems-implementation-detail/02_tensorflow-implementation-of-collaborative-filtering.mp40B
  55. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/03_recommender-systems-implementation-detail/03_finding-related-items.mp40B
  56. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/05_content-based-filtering/01_collaborative-filtering-vs-content-based-filtering.mp40B
  57. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/05_content-based-filtering/02_deep-learning-for-content-based-filtering.mp40B
  58. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/05_content-based-filtering/03_recommending-from-a-large-catalogue.mp40B
  59. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/05_content-based-filtering/04_ethical-use-of-recommender-systems.mp40B
  60. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/02_recommender-systems/05_content-based-filtering/05_tensorflow-implementation-of-content-based-filtering.mp40B
  61. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/01_reinforcement-learning-introduction/01_what-is-reinforcement-learning.mp40B
  62. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/01_reinforcement-learning-introduction/02_mars-rover-example.mp40B
  63. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/01_reinforcement-learning-introduction/03_the-return-in-reinforcement-learning.mp40B
  64. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/01_reinforcement-learning-introduction/04_making-decisions-policies-in-reinforcement-learning.mp40B
  65. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/01_reinforcement-learning-introduction/05_review-of-key-concepts.mp40B
  66. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/03_state-action-value-function/01_state-action-value-function-definition.mp40B
  67. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/03_state-action-value-function/02_state-action-value-function-example.mp40B
  68. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/03_state-action-value-function/03_bellman-equations.mp426.66MB
  69. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/03_state-action-value-function/04_random-stochastic-environment-optional.mp40B
  70. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/01_example-of-continuous-state-space-applications.mp40B
  71. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/02_lunar-lander.mp410.1MB
  72. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/03_learning-the-state-value-function.mp40B
  73. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/04_algorithm-refinement-improved-neural-network-architecture.mp40B
  74. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/05_algorithm-refinement-greedy-policy.mp40B
  75. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/06_algorithm-refinement-mini-batch-and-soft-updates-optional.mp40B
  76. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/05_continuous-state-spaces/07_the-state-of-reinforcement-learning.mp40B
  77. Coursera - Unsupervised Learning, Recommenders, Reinforcement Learning/03_reinforcement-learning/07_summary-and-thank-you/01_summary-and-thank-you.mp413.94MB
  78. Coursera -/01_neural-networks/01_neural-networks-intuition/01_welcome.mp410.64MB
  79. Coursera -/01_neural-networks/01_neural-networks-intuition/02_neurons-and-the-brain.mp426.86MB
  80. Coursera -/01_neural-networks/01_neural-networks-intuition/03_demand-prediction.mp429.48MB
  81. Coursera -/01_neural-networks/01_neural-networks-intuition/04_example-recognizing-images.mp414.49MB
  82. Coursera -/01_neural-networks/02_neural-network-model/01_neural-network-layer.mp420.44MB
  83. Coursera -/01_neural-networks/02_neural-network-model/02_more-complex-neural-networks.mp415.64MB
  84. Coursera -/01_neural-networks/02_neural-network-model/03_inference-making-predictions-forward-propagation.mp412.55MB
  85. Coursera -/01_neural-networks/03_tensorflow-implementation/01_inference-in-code.mp417.51MB
  86. Coursera -/01_neural-networks/03_tensorflow-implementation/02_data-in-tensorflow.mp424.92MB
  87. Coursera -/01_neural-networks/03_tensorflow-implementation/03_building-a-neural-network.mp424.34MB
  88. Coursera -/01_neural-networks/04_neural-network-implementation-in-python/01_forward-prop-in-a-single-layer.mp412.4MB
  89. Coursera -/01_neural-networks/04_neural-network-implementation-in-python/02_general-implementation-of-forward-propagation.mp419.75MB
  90. Coursera -/01_neural-networks/05_speculations-on-artificial-general-intelligence-agi/01_is-there-a-path-to-agi.mp428.09MB
  91. Coursera -/01_neural-networks/06_vectorization-optional/01_how-neural-networks-are-implemented-efficiently.mp413.79MB
  92. Coursera -/01_neural-networks/06_vectorization-optional/02_matrix-multiplication.mp415.85MB
  93. Coursera -/01_neural-networks/06_vectorization-optional/03_matrix-multiplication-rules.mp418.46MB
  94. Coursera -/01_neural-networks/06_vectorization-optional/04_matrix-multiplication-code.mp413.84MB
  95. Coursera -/02_neural-network-training/01_neural-network-training/01_tensorflow-implementation.mp411.48MB
  96. Coursera -/02_neural-network-training/01_neural-network-training/02_training-details.mp424.58MB
  97. Coursera -/02_neural-network-training/02_activation-functions/01_alternatives-to-the-sigmoid-activation.mp411.96MB
  98. Coursera -/02_neural-network-training/02_activation-functions/02_choosing-activation-functions.mp423.39MB
  99. Coursera -/02_neural-network-training/02_activation-functions/03_why-do-we-need-activation-functions.mp412.88MB
  100. Coursera -/02_neural-network-training/03_multiclass-classification/01_multiclass.mp48.37MB
  101. Coursera -/02_neural-network-training/03_multiclass-classification/02_softmax.mp420.68MB
  102. Coursera -/02_neural-network-training/03_multiclass-classification/03_neural-network-with-softmax-output.mp415.02MB
  103. Coursera -/02_neural-network-training/03_multiclass-classification/04_improved-implementation-of-softmax.mp417.92MB
  104. Coursera -/02_neural-network-training/03_multiclass-classification/05_classification-with-multiple-outputs-optional.mp412.87MB
  105. Coursera -/02_neural-network-training/04_additional-neural-network-concepts/01_advanced-optimization.mp415.35MB
  106. Coursera -/02_neural-network-training/04_additional-neural-network-concepts/02_additional-layer-types.mp422.09MB
  107. Coursera -/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/01_deciding-what-to-try-next.mp412.91MB
  108. Coursera -/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/02_evaluating-a-model.mp423.62MB
  109. Coursera -/03_advice-for-applying-machine-learning/01_advice-for-applying-machine-learning/03_model-selection-and-training-cross-validation-test-sets.mp432.61MB
  110. Coursera -/03_advice-for-applying-machine-learning/02_bias-and-variance/01_diagnosing-bias-and-variance.mp424.13MB
  111. Coursera -/03_advice-for-applying-machine-learning/02_bias-and-variance/02_regularization-and-bias-variance.mp425.22MB
  112. Coursera -/03_advice-for-applying-machine-learning/02_bias-and-variance/03_establishing-a-baseline-level-of-performance.mp421.86MB
  113. Coursera -/03_advice-for-applying-machine-learning/02_bias-and-variance/04_learning-curves.mp428.07MB
  114. Coursera -/03_advice-for-applying-machine-learning/02_bias-and-variance/05_deciding-what-to-try-next-revisited.mp428.02MB
  115. Coursera -/03_advice-for-applying-machine-learning/02_bias-and-variance/06_bias-variance-and-neural-networks.mp426.94MB
  116. Coursera -/03_advice-for-applying-machine-learning/03_machine-learning-development-process/01_iterative-loop-of-ml-development.mp414.81MB
  117. Coursera -/03_advice-for-applying-machine-learning/03_machine-learning-development-process/02_error-analysis.mp417.51MB
  118. Coursera -/03_advice-for-applying-machine-learning/03_machine-learning-development-process/03_adding-data.mp432.71MB
  119. Coursera -/03_advice-for-applying-machine-learning/03_machine-learning-development-process/04_transfer-learning-using-data-from-a-different-task.mp423.75MB
  120. Coursera -/03_advice-for-applying-machine-learning/03_machine-learning-development-process/05_full-cycle-of-a-machine-learning-project.mp416.35MB
  121. Coursera -/03_advice-for-applying-machine-learning/03_machine-learning-development-process/06_fairness-bias-and-ethics.mp425.35MB
  122. Coursera -/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/01_error-metrics-for-skewed-datasets.mp422.63MB
  123. Coursera -/03_advice-for-applying-machine-learning/04_skewed-datasets-optional/02_trading-off-precision-and-recall.mp426.58MB
  124. Coursera -/04_decision-trees/01_decision-trees/01_decision-tree-model.mp414.71MB
  125. Coursera -/04_decision-trees/01_decision-trees/02_learning-process.mp429.03MB
  126. Coursera -/04_decision-trees/02_decision-tree-learning/01_measuring-purity.mp419.02MB
  127. Coursera -/04_decision-trees/02_decision-tree-learning/02_choosing-a-split-information-gain.mp423.26MB
  128. Coursera -/04_decision-trees/02_decision-tree-learning/03_putting-it-together.mp419.37MB
  129. Coursera -/04_decision-trees/02_decision-tree-learning/04_using-one-hot-encoding-of-categorical-features.mp414.17MB
  130. Coursera -/04_decision-trees/02_decision-tree-learning/05_continuous-valued-features.mp415.89MB
  131. Coursera -/04_decision-trees/02_decision-tree-learning/06_regression-trees-optional.mp418.9MB
  132. Coursera -/04_decision-trees/03_tree-ensembles/01_using-multiple-decision-trees.mp412.51MB
  133. Coursera -/04_decision-trees/03_tree-ensembles/02_sampling-with-replacement.mp414.33MB
  134. Coursera -/04_decision-trees/03_tree-ensembles/03_random-forest-algorithm.mp415.31MB
  135. Coursera -/04_decision-trees/03_tree-ensembles/04_xgboost.mp422.74MB
  136. Coursera -/04_decision-trees/03_tree-ensembles/05_when-to-use-decision-trees.mp419.4MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统