首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
林軒田(Hsuan-Tien Lin) - [機器學習基石]Machine Learning Foundations
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-2-24 21:03
2024-12-27 20:18
184
2.04 GB
65
磁力链接
magnet:?xt=urn:btih:f5ccadecda7959e556dbbb90a26c92e861a0ded8
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmY1Y2NhZGVjZGE3OTU5ZTU1NmRiYmI5MGEyNmM5MmU4NjFhMGRlZDhaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
林軒田
Hsuan-Tien
Lin
-
機器學習基石
Machine
Learning
Foundations
文件列表
P10 3-1-Learning with Different Output Space @ Machine Learning Foundations (機器學習基石).mp4
64.54MB
P11 3-2-Learning with Different Data Label @ Machine Learning Foundations (機器學習基石).mp4
58.8MB
P13 3-4-Learning with Different Input Space @ Machine Learning Foundations (機器學習基石).mp4
46.5MB
P30 8-1-Noise and Probabilistic Target @ Machine Learning Foundations (機器學習基石).mp4
45.33MB
P2 1-2-What Is Machine Learning @ Machine Learning Foundations (機器學習基石).mp4
44.01MB
P46 12-1-Quadratic Hypotheses @ Machine Learning Foundations (機器學習基石).mp4
43.16MB
P3 1-3-Applications of Machine Learning @ Machine Learning Foundations (機器學習基石).mp4
42.19MB
P54 14-1-Regularized Hypothesis Set @ Machine Learning Foundations (機器學習基石).mp4
41.09MB
P55 14-2-Weight Decay Regularization @ Machine Learning Foundations (機器學習基石).mp4
40.79MB
P19 5-2-Effective Number of Lines @ Machine Learning Foundations (機器學習基石).mp4
40.69MB
P12 3-3-Learning with Different Protocol @ Machine Learning Foundations (機器學習基石).mp4
39.81MB
P9 2-4-Non-Separable Data @ Machine Learning Foundations (機器學習基石).mp4
39.56MB
P58 15-1-Model Selection Problem @ Machine Learning Foundations (機器學習基石).mp4
38.68MB
P42 11-1-Linear Models for Binary Classification @ Machine Learning Foundations (機器學習基石).mp4
38.55MB
P18 5-1-Recap and Preview @ Machine Learning Foundations (機器學習基石).mp4
37.97MB
P16 4-3-Connection to Learning @ Machine Learning Foundations (機器學習基石).mp4
37.83MB
P17 4-4-Connection to Real Learning @ Machine Learning Foundations (機器學習基石).mp4
37.7MB
P14 4-1-Learning is Impossible @ Machine Learning Foundations (機器學習基石).mp4
37.62MB
P41 10-4-Gradient Descent @ Machine Learning Foundations (機器學習基石).mp4
37.56MB
P52 13-3-Deterministic Noise @ Machine Learning Foundations (機器學習基石).mp4
37.5MB
P26 7-1-Definition of VC Dimension @ Machine Learning Foundations (機器學習基石).mp4
36.36MB
P48 12-3-Price of Nonlinear Transform @ Machine Learning Foundations (機器學習基石).mp4
36.34MB
P36 9-3-Generalization Issue @ Machine Learning Foundations (機器學習基石).mp4
35.92MB
P63 16-2-Sampling Bias @ Machine Learning Foundations (機器學習基石).mp4
34.56MB
P25 6-4-A Pictorial Proof @ Machine Learning Foundations (機器學習基石).mp4
33.9MB
P20 5-3-Effective Number of Hypotheses @ Machine Learning Foundations (機器學習基石).mp4
33.43MB
P1 1-1-Course Introduction @ Machine Learning Foundations (機器學習基石).mp4
33.27MB
P51 13-2-The Role of Noise and Data Size @ Machine Learning Foundations (機器學習基石).mp4
32.91MB
P6 2-1-Perceptron Hypothesis Set @ Machine Learning Foundations (機器學習基石).mp4
32.7MB
P50 13-1-What is Overfitting @ Machine Learning Foundations (機器學習基石).mp4
32.4MB
P43 11-2-Stochastic Gradient Descent @ Machine Learning Foundations (機器學習基石).mp4
32.32MB
P64 16-3-Data Snooping @ Machine Learning Foundations (機器學習基石).mp4
32.16MB
P4 1-4-Components of Learning @ Machine Learning Foundations (機器學習基石).mp4
32.12MB
P33 8-4-Weighted Classification @ Machine Learning Foundations (機器學習基石).mp4
31.98MB
P15 4-2-Probability to the Rescue @ Machine Learning Foundations (機器學習基石).mp4
31.8MB
P57 14-4-General Regularizers @ Machine Learning Foundations (機器學習基石).mp4
31.28MB
P22 6-1-Restriction of Break Point @ Machine Learning Foundations (機器學習基石).mp4
30.46MB
P24 6-3-Bounding Function Inductive Cases @ Machine Learning Foundations (機器學習基石).mp4
30.07MB
P29 7-4-Interpreting VC Dimension @ Machine Learning Foundations (機器學習基石).mp4
29.41MB
P61 15-4-V-Fold Cross Validation @ Machine Learning Foundations (機器學習基石).mp4
28.66MB
P40 10-3-Gradient of Logistic Regression Error @ Machine Learning Foundations (機器學習基石).mp4
28.14MB
P27 7-2-VC Dimension of Perceptrons @ Machine Learning Foundations (機器學習基石).mp4
27.26MB
P32 8-3-Algorithmic Error Measure @ Machine Learning Foundations (機器學習基石).mp4
26.91MB
P35 9-2-Linear Regression Algorithm @ Machine Learning Foundations (機器學習基石).mp4
26.89MB
P62 16-1-Occam's Razor @ Machine Learning Foundations (機器學習基石).mp4
26.81MB
P39 10-2-Logistic Regression Error @ Machine Learning Foundations (機器學習基石).mp4
26.44MB
P34 9-1-Linear Regression Problem @ Machine Learning Foundations (機器學習基石).mp4
26.37MB
P44 11-3-Multiclass via Logistic Regression @ Machine Learning Foundations (機器學習基石).mp4
26.27MB
P56 14-3-Regularization and VC Theory @ Machine Learning Foundations (機器學習基石).mp4
25.96MB
P37 9-4-Linear Regression for Binary Classification @ Machine Learning Foundations (機器學習基石).mp4
25.92MB
P8 2-3-Guarantee of PLA @ Machine Learning Foundations (機器學習基石).mp4
25.68MB
P7 2-2-Perceptron Learning Algorithm @ Machine Learning Foundations (機器學習基石).mp4
25.12MB
P21 5-4-Break Point @ Machine Learning Foundations (機器學習基石).mp4
23.63MB
P60 15-3-Leave-One-Out Cross Validation @ Machine Learning Foundations (機器學習基石).mp4
23.35MB
P31 8-2-Error Measure @ Machine Learning Foundations (機器學習基石).mp4
22.93MB
P53 13-4-Dealing with Overfitting @ Machine Learning Foundations (機器學習基石).mp4
22.71MB
P38 10-1-Logistic Regression Problem @ Machine Learning Foundations (機器學習基石).mp4
22.69MB
P59 15-2-Validation @ Machine Learning Foundations (機器學習基石).mp4
21.76MB
P45 11-4-Multiclass via Binary Classification @ Machine Learning Foundations (機器學習基石).mp4
21.73MB
P65 16-4-Power of Three @ Machine Learning Foundations (機器學習基石).mp4
21.1MB
P5 1-5-Machine Learning and Other Fields @ Machine Learning Foundations (機器學習基石).mp4
19.63MB
P47 12-2-Nonlinear Transform @ Machine Learning Foundations (機器學習基石).mp4
18.32MB
P49 12-4-Structured Hypothesis Sets @ Machine Learning Foundations (機器學習基石).mp4
16.91MB
P23 6-2-Bounding Function Basic Cases @ Machine Learning Foundations (機器學習基石).mp4
16.16MB
P28 7-3-Physical Intuition of VC Dimension @ Machine Learning Foundations (機器學習基石).mp4
14.61MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统