首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[DesireCourse.Com] Udemy - Unsupervised Deep Learning in Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-4-20 16:41
2024-10-21 04:03
118
2.7 GB
84
磁力链接
magnet:?xt=urn:btih:fa01761607262fc54021026dce9fb9fa6657b662
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmZhMDE3NjE2MDcyNjJmYzU0MDIxMDI2ZGNlOWZiOWZhNjY1N2I2NjJaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
DesireCourse
Com
Udemy
-
Unsupervised
Deep
Learning
in
Python
文件列表
1. Introduction and Outline/1. Introduction and Outline.mp4
3.27MB
1. Introduction and Outline/2. Where does this course fit into your deep learning studies.mp4
5.19MB
1. Introduction and Outline/3. How to Succeed in this Course.mp4
6.41MB
1. Introduction and Outline/4. Where to get the code and data.mp4
26.43MB
1. Introduction and Outline/5. Tensorflow or Theano - Your Choice!.mp4
18.93MB
1. Introduction and Outline/6. What are the practical applications of unsupervised deep learning.mp4
11.66MB
10. Basics Review/1. (Review) Theano Basics.mp4
93.43MB
10. Basics Review/2. (Review) Theano Neural Network in Code.mp4
87.03MB
10. Basics Review/3. (Review) Tensorflow Basics.mp4
81.47MB
10. Basics Review/4. (Review) Tensorflow Neural Network in Code.mp4
97.39MB
10. Basics Review/5. (Review) Keras Basics.mp4
27.64MB
10. Basics Review/6. (Review) Keras in Code pt 1.mp4
66.17MB
10. Basics Review/7. (Review) Keras in Code pt 2.mp4
38.67MB
11. Optional - Legacy RBM Lectures/1. (Legacy) Restricted Boltzmann Machine Theory.mp4
14.39MB
11. Optional - Legacy RBM Lectures/2. (Legacy) Deriving Conditional Probabilities from Joint Probability.mp4
9.37MB
11. Optional - Legacy RBM Lectures/3. (Legacy) Contrastive Divergence for RBM Training.mp4
4.85MB
11. Optional - Legacy RBM Lectures/4. (Legacy) How to derive the free energy formula.mp4
10.88MB
12. Appendix/1. What is the Appendix.mp4
5.45MB
12. Appendix/10. Python 2 vs Python 3.mp4
7.84MB
12. Appendix/11. Is Theano Dead.mp4
17.82MB
12. Appendix/12. What order should I take your courses in (part 1).mp4
29.33MB
12. Appendix/13. What order should I take your courses in (part 2).mp4
37.62MB
12. Appendix/2. BONUS Where to get Udemy coupons and FREE deep learning material.mp4
4.03MB
12. Appendix/3. Windows-Focused Environment Setup 2018.mp4
186.39MB
12. Appendix/4. How to install Numpy, Scipy, Matplotlib, Pandas, IPython, Theano, and TensorFlow.mp4
43.92MB
12. Appendix/5. How to Code by Yourself (part 1).mp4
24.53MB
12. Appendix/6. How to Code by Yourself (part 2).mp4
14.8MB
12. Appendix/7. How to Succeed in this Course (Long Version).mp4
18.31MB
12. Appendix/8. Is this for Beginners or Experts Academic or Practical Fast or slow-paced.mp4
38.95MB
12. Appendix/9. Proof that using Jupyter Notebook is the same as not using it.mp4
78.25MB
2. Principal Components Analysis/1. What does PCA do.mp4
27.79MB
2. Principal Components Analysis/10. SVD (Singular Value Decomposition).mp4
42.47MB
2. Principal Components Analysis/2. How does PCA work.mp4
50.93MB
2. Principal Components Analysis/3. Why does PCA work (PCA derivation).mp4
51.32MB
2. Principal Components Analysis/4. PCA only rotates.mp4
16.45MB
2. Principal Components Analysis/5. MNIST visualization, finding the optimal number of principal components.mp4
9.39MB
2. Principal Components Analysis/6. PCA implementation.mp4
32.09MB
2. Principal Components Analysis/7. PCA for NLP.mp4
16.62MB
2. Principal Components Analysis/8. PCA objective function.mp4
3.68MB
2. Principal Components Analysis/9. PCA Application Naive Bayes.mp4
53.65MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/1. t-SNE Theory.mp4
7.9MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/2. t-SNE Visualization.mp4
13.03MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/3. t-SNE on the Donut.mp4
15.1MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/4. t-SNE on XOR.mp4
9.31MB
3. t-SNE (t-distributed Stochastic Neighbor Embedding)/5. t-SNE on MNIST.mp4
4.35MB
4. Autoencoders/1. Autoencoders.mp4
5.82MB
4. Autoencoders/10. Deep Autoencoder Visualization Description.mp4
2.46MB
4. Autoencoders/11. Deep Autoencoder Visualization in Code.mp4
27.85MB
4. Autoencoders/12. An Autoencoder in 1 Line of Code.mp4
24.94MB
4. Autoencoders/2. Denoising Autoencoders.mp4
3.44MB
4. Autoencoders/3. Stacked Autoencoders.mp4
6.6MB
4. Autoencoders/4. Writing the autoencoder class in code (Theano).mp4
38.52MB
4. Autoencoders/5. Testing our Autoencoder (Theano).mp4
11.36MB
4. Autoencoders/6. Writing the deep neural network class in code (Theano).mp4
41.97MB
4. Autoencoders/7. Autoencoder in Code (Tensorflow).mp4
24.45MB
4. Autoencoders/8. Testing greedy layer-wise autoencoder training vs. pure backpropagation.mp4
18.53MB
4. Autoencoders/9. Cross Entropy vs. KL Divergence.mp4
7.42MB
5. Restricted Boltzmann Machines/1. Basic Outline for RBMs.mp4
32.98MB
5. Restricted Boltzmann Machines/10. RBM in Code (Theano) with Greedy Layer-Wise Training on MNIST.mp4
47.76MB
5. Restricted Boltzmann Machines/11. RBM in Code (Tensorflow).mp4
13.7MB
5. Restricted Boltzmann Machines/2. Introduction to RBMs.mp4
39.44MB
5. Restricted Boltzmann Machines/3. Motivation Behind RBMs.mp4
34MB
5. Restricted Boltzmann Machines/4. Intractability.mp4
12.92MB
5. Restricted Boltzmann Machines/5. Neural Network Equations.mp4
31.71MB
5. Restricted Boltzmann Machines/6. Training an RBM (part 1).mp4
49.08MB
5. Restricted Boltzmann Machines/7. Training an RBM (part 2).mp4
27.34MB
5. Restricted Boltzmann Machines/8. Training an RBM (part 3) - Free Energy.mp4
27.58MB
5. Restricted Boltzmann Machines/9. RBM Greedy Layer-Wise Pretraining.mp4
23.62MB
6. The Vanishing Gradient Problem/1. The Vanishing Gradient Problem Description.mp4
5.2MB
6. The Vanishing Gradient Problem/2. The Vanishing Gradient Problem Demo in Code.mp4
31.29MB
7. Extras + Visualizing what features a neural network has learned/1. Exercises on feature visualization and interpretation.mp4
3.75MB
8. Applications to NLP (Natural Language Processing)/1. Application of PCA and SVD to NLP (Natural Language Processing).mp4
3.93MB
8. Applications to NLP (Natural Language Processing)/2. Latent Semantic Analysis in Code.mp4
25.62MB
8. Applications to NLP (Natural Language Processing)/3. Application of t-SNE + K-Means Finding Clusters of Related Words.mp4
25.99MB
9. Applications to Recommender Systems/1. Recommender Systems Section Introduction.mp4
68.17MB
9. Applications to Recommender Systems/10. Recommender RBM Code Speedup.mp4
82.95MB
9. Applications to Recommender Systems/2. Why Autoencoders and RBMs work.mp4
38.19MB
9. Applications to Recommender Systems/3. Data Preparation and Logistics.mp4
21.21MB
9. Applications to Recommender Systems/4. AutoRec.mp4
48.9MB
9. Applications to Recommender Systems/5. AutoRec in Code.mp4
102.28MB
9. Applications to Recommender Systems/6. Categorical RBM for Recommender System Ratings.mp4
47.59MB
9. Applications to Recommender Systems/7. Recommender RBM Code pt 1.mp4
70.42MB
9. Applications to Recommender Systems/8. Recommender RBM Code pt 2.mp4
39.58MB
9. Applications to Recommender Systems/9. Recommender RBM Code pt 3.mp4
128.54MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统